Рефераты. Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Т...






Однако производить ЭП с различными характеристиками влияния на режим сети или с различной степенью восприимчивости, сообразуясь с конкретной электромагнитной обстановкой в тех или иных узлах системы, практически невозможно. Кроме того, электромагнитная обстановка с течением времени меняется, что при таком подходе потребует изменения характеристик ЭП. В отличие от потребления реактивной мощности, изменяющегося практически в однозначном направлении, значения параметров электроэнергии могут измениться в любую сторону. И, наконец, в настоящее время отсутствуют методы и средства (программы для ЭВМ), позволяющие определять эти оптимальные значения с точностью, достаточной для практических целей и оправдывающей столь сложную организацию работ. Поэтому принятый в настоящее время путь сохранения допустимой электромагнитной обстановки в сети состоит в нормировании предельных значений параметров электроэнергии. Параметры электроэнергии или их комбинации, на значения которых накладывают соответствующие ограничения (нормы), называют показателями электромагнитной совместимости оборудования.

Для обеспечения электромагнитной совместимости оборудования необходимо иметь комплекс взаимно согласованных норм, применяемых в различных сферах про­ектирования и эксплуатации сетей и ЭП:

1) нормы на предельные уровни искажений, вносимых в сеть отдельными ЭП. Эти нормы используют при конструировании ЭП, вносящих искажения в сеть;

2) нормы на предельные уровни искажений, вносимых в сеть энергосистемы потребителями энергии. Эти нормы относятся к границам раздела сетей и определяют характер мер, которые должен принять потребитель, имеющий различные искажающие ЭП, часть из которых, возможно, не оборудована специальными подавляющими устройствами, а искажения не оказывают влияния на работу ЭП данного потребителя. Эти нормы используют при проектировании или реконструкции сети потребителя с целью принятия централизованных мер по предотвращению выброса недопустимо больших искажений в питающую сеть. В условиях эксплуатации на этих нормах должна основываться система надбавок к тарифам на электроэнергию за внесение искажений, превышающих установленный уровень;

3) нормы на качество поставляемой энергии, представляющие собой условия, обеспечиваемые энергоснабжающими организациями на границе раздела сетей. В эксплуатации на этих нормах должна основываться система скидок с тарифов за поставку электроэнергии пониженного качества;

4) нормы на предельные уровни искажений на вводах ЭП, чувствительных к искажениям питающего напряжения, используемые при конструировании ЭП. На основании этих норм предусматривают мероприятия по защите ЭП от помех. Очевидно, что уровень искажений на вводах ЭП в общем случае не совпадает с их уровнем на границе раздела и может быть выше последнего из-за искажений, вносимых собственными ЭП. Кроме того, в условиях эксплуатации возможны случаи, когда в послеаварийных режимах энергия поставляется с пониженным качеством. Это приводит к снижению экономических показателей оборудования, но не должно приводить к выходу его из строя. Поэтому нормы искажений в расчете на которые должны конструироваться ЭП должны быть выше норм, предъявляемых к качеству электроэнергии в нормальных условиях электроснабжения.

Фактические режимы работы ЭП будут отличаться от тех, в расчете на которые они проектировались, вслед­ствие многообразия условий, в которых используются ЭП, и изменения во времени параметров электроэнергии на их вводах. Для некоторых типов ЭП воздействие параметров может проявляться в одной и той же форме (например, нагрева). При этом превышение одного из ПКЭ над нормированным значением может не вызвать необходимости применения каких-либо мер, если другие ПКЭ в это время находятся существенно ниже предель­ных значений. Для оценки допустимости режимов работы конкретного оборудования в конкретных условиях необходимо, с одной стороны, знать функцию совместного воздействия на характеристики оборудования всех ПКЭ, а с другой— уметь оценивать допустимость режима при случайном характере воздействующих факторов.

Разработка охарактеризованного выше комплекса норм еще не завершена. В настоящее время действует стандарт, устанавливающий нормы качества электроэнергии на вводах ЭП (ГОСТ 13109—67). Этот стандарт не укладывается в структуру норм, описанную выше, представляя собой нормы на качество электроэнергии, потребляемой непосредственно ЭП, т. е. нечто среднее между описанным в пп.З и 4, безотносительно к организационному механизму ответственности за несоблюдение норм. Несмотря на недостатки стандарта, его использование оказалось полезным в основном в связи с учетом его требований проектными организациями. В условиях же эксплуатации проверка соблюдения его требований практически не проводилась из-за отсутствия как средств измерения ПКЭ, так и организационного механизма контроля качества. Сказался и тот факт, что в ряде случаев ЭП функционируют нормально и при несоблюдении его требований.

ГОСТ 13109—67 устанавливает для трехфазных сетей переменного тока шесть ПКЭ: отклонение напряжения, отклонение частоты, размах колебаний напряжения, размах колебаний частоты, коэффициенты обратной последовательности и искажения синусоидальности напряжений.

Целью данной работы является рассмотрение последнего показателя (искажения синусоидальности).

Задача ограничения уровней гармоник в электрических сетях имеет два аспекта: технический и экономический.

Необходимость лимитировать допустимые величины гармоник определяется такими техническими требованиями, как исключение неуспешных коммутаций вентиль­ных преобразователей (в особенности это относится к реверсивным преобразователям, работающим и в выпрямительном, и в инвентарном режиме); предотвращение повреждений батарей конденсаторов и других аппаратов вследствие резонансных явлений на высших гармониках; обеспечение качественной работы устройств релейной защиты и измерительных приборов, систем автоматики, телемеханики и связи.

При наличии высших гармоник ухудшаются экономические показатели работы систем электроснабжения предприятий в результате возникновения добавочных потерь от гармоник и сокращения срока службы изоляции электрических машин, трансформаторов, батарей конденсаторов и силовых кабелей.;

В настоящее время в различных странах действуют национальные нормы, лимитирующие, как правило, уровень гармоник в кривых напряжений или токов. При составлении этих норм принимались во внимание исключительно технические соображения, так как, по мнению ряда зарубежных авторов, возможность расчета ущерба от действия гармоник весьма проблематична. В отдельных случаях энергетическими системами Западной Европы задаются максимально допустимые уровни отдельных гармоник напряжения, что необходимо для выбора силовых фильтров.

Международной электротехнической комиссией (МЭК) приняты нормы, согласно которым допускается мгновенное отклонение напряжения сети, т. е. разность ординат кривых результирующего напряжения и первой гармоники, на шинах преобразователя не более 5% амплитудного значения.


6.2. Сущность искажения синусоидальности кривых напряжений и токов


Искажения вызываются работой ЭП с нелинейной вольт-амперной характеристикой и регулируемых преобразователей переменного тока в постоянный. Кривые тока и напряжения в этих случаях приобретают вид, отличный с синусоиды. Пользуясь методом гармонических составляющих, можно исходную несинусоидальную кривую разложить на сумму синусоидальных с определенными значениями амплитуд гармоник их начальных углов.

Гармоники создают магнитные поля различных последовательностей. Так как кривые напряжений в каждой фазе сдвинуты между собой на 1/3 (или на полный период третьей гармоники), то третьи гармоники совпадают друг с другом по фазе и образуют нулевую последовательность. Аналогично ведут себя все гармоники, кратные трем. Поэтому токи гармоник, кратных трем, не могут существовать в трехфазной сети без нулевого провода или выйти за пределы обмоток, соединенных в треугольник. Порядок чередования фаз для гармоник n=4, 7, 10, 13... (n -1 делится на 3) совпадает с прямым, а гармоник n=2, 5, 8, 11,... (n+1 делится на 3) — с обратным порядком.


6.3. Влияния высших гармоник на силовые установки


Высшие гармоники в системе электроснабжения промышленных предприятий, как уже отмечалось ранее, нежелательны по ряду причин: появляются дополнительные потери в электрических машинах, трансформаторах и сетях; затрудняется компенсация реактивной мощности с помощью батарей конденсаторов; сокращается срок службы изоляции электрических машин и аппаратов; ухудшается качество работы систем релейной защиты, автоматики, телемеханики и связи.

При работе асинхронного электродвигателя в условиях несинусоидального напряжения несколько снижаются его коэффициент мощности и вращающий момент на валу.

На практике искажение кривой напряжения мало влияет на коэффициент мощности двигателя; так, например, если амплитуды 5-й и 7-й гармоник напряжения составляют соответственно 20 и 15% амплитуды первой гармоники, то коэффициент мощности двигателя уменьшается на 2,6% в сравнении со значением его при синусоидальном напряжении. В условиях промышлен­ных предприятий искажения напряжения бывают меньшими, поэтому влияние высших гармоник на коэффициент мощности асинхронного электродвигателя можно не учитывать.

Моменты, развиваемые высшими гармониками тока, также составляют очень малую величину вращающего момента асинхронных и синхронных двигателей, определяемого первой гармоникой питающего напряжения. Так, для асинхронного двигателя средней мощности при удельном весе 5-й гармоники напряжения, равном 20% основной, момент, обусловленный 5-й гар­моникой, не превосходит 0,1% момента, развиваемого при промышленной частоте.


6.4. Влияние гармоник на изоляцию электроустановок


Искажение формы кривой напряжения оказывает существенное влияние на возникновение и протекание ионизационных процессов в изоляции электрических машин и трансформаторов.

При наличии газовых включений в изоляции в этих включениях возникает ионизация, сущность которой заключается в образовании объемных зарядов и последующей нейтрализации их. Нейтрализация заряда связана с рассеиванием энергии, следствием которого является электрическое, механическое и химическое воздействие на окружающий диэлектрик. В результате ионизационных процессов развиваются местные дефекты в изоляции, что приводит к снижению ее электрической прочности, возрастанию диэлектрических потерь и в конечном счете к сокращению срока службы.

Количество разрядов в газовых включениях зависит от формы кривой напряжения, приложенного к изоляции.

Подробные многолетние исследования форм кривых напряжения в сетях промышленных предприятий показывают, что в большинстве случаев за счет высших гармоник кривые напряжения принимают более заостренную форму в сравнении с синусоидой и поэтому наличие высших гармоник в этих сетях приводит к ускоренному старению изоляции электрических машин и трансформаторов.

При наличии гармоник в кривой напряжения процесс старения диэлектрика конденсаторов протекает также более интенсивно, чем в случае, когда конденсаторы работают при синусоидальном напряжении. Это объясняется тем, что физико-химические процессы в диэлектриках, обусловливающие старение их, значительно ускоряются при высоких частотах электрического поля. Аналогично влияет дополнительный нагрев, вызванный протеканием высших гармоник тока.

Таким образом, наличие высших гармоник в кривой напряжения, даже в допустимых пределах, приводит к значительной интенсификации процесса старения диэлектрика конденсаторов и как следствие сокращению срока службы их.

В соответствии с ГОСТ 1262-68 батареи конденсаторов могут длительно работать при перегрузке их токами высших гармоник не более чем на 30%; допустимое повышение напряжения лимитируется величиной 10%. Однако при длительной эксплуатации конденсаторов в этих условиях срок службы их сокращается. В условиях промышленных предприятий, как правило, конденсаторы периодически оказываются в режиме, близком к резонансу токов на частоте какой-либо из гармоник низкого порядка; вследствие систематических перегрузок они быстро выходят из строя. В настоящее время на многих крупных промышленных предприятиях, где имеются мощные вентильные преобразователи, батареи конденсаторов без применения специальных мер защиты их от высших гармоник, по существу, не работают. В результате снижается коэффициент мощности электроустановок цехов и производств, ухудшаются экономические показатели систем электроснабжения предприятий.

При несинусоидальном напряжении сети происходит ускоренное старение изоляции силовых кабелей. Для подтверждения этого положения были сопоставлены результаты замеров токов утечки кабелей, проложенных почти одновременно и работающих в сходных температурных условиях; часть обследованных кабелей работала при практически синусоидальном напряжении, другая — при уровне гармоник в кривой напряжения в пределах 6—8,5% (преобладали 5-я и 7-я гармоники). Токи утечки во втором случае через 2,5 года эксплуатации оказались в среднем на 36% больше, через 3,5 года — на 43%.

6.5. Влияние высших гармоник на системы автоматики


Воздействие высших гармоник на системы импульсно-фазового управления вентильными преобразователями может привести к воз-никновению так называемой гармонической неустойчивости. Явление гармонической неустойчивости состоит в появлении на шинах многофазного преобразователя большого напряжения четной гармоники или гармоники, кратной трем; при этом в кривой напряжения сети появляются также другие гармоники четных порядков и кратные трем, однако меньшие по величине. Искажения кривой напряжения сети могут быть столь большими, что в инверторном режиме преобразователя появятся нарушения коммутации; при этом работа системы импульсно-фазового управления также может оказаться неустойчивой.

Гармоническая неустойчивость может возникнуть при подключении преобразователя к электрической системе, мощность короткого замыкания которой соизмерима с мощностью преобразователя, в случае, если имеются другие источники гармоник (например, силовые трансформаторы). Основной причиной появления гармонической неустойчивости является асимметрия управляющих импульсов, неизбежная в реальных системах импульсно-фазового управления. Следствием этой асимметрии является появление в спектре тока преобразователя четных гармоник и гармоник, кратным трем; усиление их при наличии указанных выше условий и приводят к гармонической неустойчивости.

Повышение напряжения на частоте какой-либо гармоники существенно ограничивается при использовании заградительных фильтров в системах импульсно-фазового управления.

Возникновение гармонической неустойчивости исключается при соблюдении условия

, (6.1)

где xк — сопротивление короткого замыкания питающей энергосистемы на шинах преобразователя; Idн — номинальный выпрямленный ток преобразователя; U—линейное напряжение сети.

Для преобразователей ПМ СС-3:

;

На входе систем импульсно-фазового управления подключаются фильтры, благодаря чему усиление четных гармоник и гармоник, кратных трем, практически не имеет места.

В некоторых энергосистемах были зафиксированы случаи неверной работы блокировок от качаний, причиной которых были высшие гармоники тока, в частности пятая гармоника. Наблюдались также случаи ложной работы устройств релейной защиты, в которых использовались фильтры токов обратной последовательности, из-за наличия токов высших гармоник, которые образуют систему обратной последовательности. Влияние высших гармоник на работу релейной защиты проявляется при уровне гармоник а токе нагрузки линии порядка 5—7%.

Высшие гармоники тока и напряжения в сети ухудшают работу телемеханических устройств и даже вызывают сбои, если силовые цепи используются в качестве каналов связи между полукомплектами диспетчерского и контролируемого пунктов. Затрудняется использование простой и дешевой системы циркуляторного телеуправления по линиям распределительных сетей с использованием четных гармоник.


6.6. Расчет компенсации реактивной мощности

Составим уравнение баланса реактивной мощности

, (6.2)

где  - реактивная мощность подлежащая компенсации

 

 - потери реактивной мощности

;

;

;

.

Дополнительные потери активной мощности в ВЛ от передачи реактивной

;


6.7. Расчет компенсации реактивной мощности с учетом подключения силовых резонансных фильтров


При комплексном подходе к решению проблемы качества электроэнергии в сетях с нелинейными нагрузками применим многофункциональные устройства - силовые резонансные фильтры (СРФ) высших гармоник, которые наряду со снижением уровней высших гармоник генерируют в питающую сеть реактивную мощность.

По номограммам рис.8.2.[2] определим возможность подключения вентильной нагрузки исходя из допустимого уровня коэффициента несинусоидальности.

Для подъемных машин СС-3:

;

Из данного соотношения следует, что при данной мощности нелинейной (вентильной) нагрузки в сеть будут выдаваться высшие гармоники недопустимого уровня и подключение батарей конденсаторов к шинам ГПП-33 приведет к выходу последних из строя.  

Для более точных данных о значении коэффициента несинусоидальности воспользуемся данными из литературы [5].

Проведенное исследование показателей качества электрической энергии в узлах нагрузки с тиристорными преобразователями показало:


Таблица 6.1.

Показатели качества электрической энергии.


Коэфф.несинус.

с 0.00 до 8.00

с 8.00 до 16.00

с 16.00 до 24.00

Сред. за сутки

ПМ “Юг”

 4,175

 3,35

 8,425

 5,325

ПМ “Север”

 11,85

 10,8

 19,3

 14


На обеих подъемных машинах Кнс>5%.

Наметим к установке СРФ на каждую подъемную машину.

Для подъемных машин КС-3:

;

По номограммам рис.8.2.[4] определить возможность подключения вентильной нагрузки исходя из допустимого уровня коэффициента несинусоидальности затруднительно, т.к. полученная точка находится на границе зоны недопустимости установки БК.

Для более точной оценки воспользуемся формулой:

, (6.3)

где , (6.4)

Кр=4 при двенадцати пульсной схеме выпрямления

Кр=0 при шести пульсной схеме выпрямления

Для большой подьемной машины:

;

%.

Для малой подьемной машины:

;

%.

СС-3:

Реактивная нагрузка группы преобразователей

;

Допустимое значение реактивной нагрузки группы преобразователей

;

Реактивная мощность группы преобразователей подлежащая компенсации

;


6.8. Расчет силовых резонансных фильтров


Существующая практика применения резонансных фильтров основывается на использовании комплекта фильтров, настроенных по возможности точно на частоты гармоник, преобладающих в амплитудном спектре токов нелинейных нагрузок. Такой подход определялся, главным образом, стремлением снизить уровень гармоник в сети до минимального значения (теоретически до нуля). Применение фильтров малой и средней мощности (с отношением мощности батарей фильтра Qр к мощности короткого замыкания сети Sкз порядка Кр = Qр/Sкз< 0,01) обусловливало повышенные требования к точности настройки с целью избежать усиление отдельных гармоник напряжения в сети, перегрузки фильтров и других неблагоприятных явлений.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.