Рефераты. Основы теории и технологии контактной точечной сварки






Наиболее просто определять момент tНП начала плавления металла в контакте деталь–деталь. Это можно осуществить прерыванием процесса сварки (на серийных машинах это можно сделать с шагом 0,02 или 0,01 с). Установлено, что с увеличением жесткости режима сварки момент начала плавления металла tНП смещается к началу процесса и существует корреляционная зависимость между значением tНП и проплавлением деталей, выраженным отношением высоты ядра расплавленного металла к суммарной толщине деталей hЯ/2s. Усредненная для способов КТС зависимость значений tНП от проплавления деталей hЯ/2s, показанная на рис. 3.10, вполне удовлетворительно описывается функцией, интерполированной по полиному Лагранжа [217]:

,     (3.37)

где tСВ время сварки; hЯ – высота ядра; s –толщина детали.

Экспериментальное определение максимального значения температуры в контакте электрод-деталь ТЭ не имеет принципиальных препятствий. Это можно сделать по любой из известных методик, например, описанным в работах [14, 207]. Основная трудность таких измерений — это их относительно большая трудоемкость.

Проведенными исследованиями и обработкой известных результатов экспериментов других исследователей, а также результатов расчетов температуры методом конечных разностей, установлено наличие корреляционной зависимости между максимальным значением температуры в контакте электрод–деталь ТЭ и относительным проплавлением деталей hЯ/2s (рис. 3.10). Зависимость  удовлетворительно описывается следующей, относительно простой, аппроксимированной функцией:

,                                (3.38)

где ТПЛ — температура плавления металла; hЯ — высота ядра; s —толщина свариваемых деталей.

Наиболее трудоемко определение изменения в процессе формирования соединения коэффициентов azt и art, характеризующих изменение градиента температуры по координатам z и r. Для этого необходимо измерять значения температуры в характерных точках (см. рис. 3.5), а затем определять значения azt и art обратным расчетом по зависимости (3.36). Трудоемкость определения этих коэффициентов можно несколько уменьшить после начала плавления металла. Для этого экспериментально следует измерять изменение высоты hЯt и диаметра dЯt ядра, а коэффициенты azt и art так же определять обратным расчетом по зависимостям (3.40) и (3.41). Обработкой значительного числа экспериментальных данных установлено, что характер изменения коэффициентов azt и art в процессе формирования точечных сварных соединений зависит в основном от геометрии рабочей поверхности электродов и жесткости режимов сварки.

Наиболее близкий характер изменения градиента температуры по координатам z и r в процессе формирования соединения при сварке электродами со сферической рабочей поверхностью (рис. 3.11). При сварке электродами со сферической рабочей поверхностью плавление металла начинается в относительно небольшом объёме и увеличение высоты hЯt (рис. 3.11, а) и диаметра dЯt (рис. 3.11, б) ядра происходит плавно. Это обусловлено тем, что градиент изменения температуры по координатам z и r в начале процесса нагрева весьма высок, а в процессе сварки плавно уменьшается, вследствие чего уменьшаются и значения коэффициентов azt (рис. 3.11, а) и art (рис. 3.11, б).

Изменения градиента температуры по координатам z и r в процессе формирования соединения при сварке электродами с плоской рабочей поверхностью различаются в большей степени, в особенности в начале процесса сварки (рис. 3.12).
При сварке электродами с плоской рабочей поверхностью плавление металла начинается по большей площади контакта, чем при сварке электродами со сферической рабочей поверхностью, что обусловлено меньшим градиентом температуры по координате r. Затем, увеличение высоты hЯt (рис. 3.12, а) и диаметра dЯt (рис. 3.12, 6) ядра также происходит плавно. Градиент изменения температуры по координате z изменяется аналогично предыдущему, соответственно изменяется и azt (рис. 3.12, а). Отличия носят лишь количественный характер. Градиент же изменения температуры по координате r в процессе сварки, в отличие от предыдущего случая, почти не изменяется, хотя в начальной стадии наблюдается повышенный его разброс. Это предопределяет относительно большие начальные значения диаметров ядра (рис. 3.12, б) и относительно не большие изменения значений art (рис. 3.12, б).


При точечной сварке с обжатием периферийной зоны соединения плавление металла начинается по еще большей площади контакта, чем при сварке электродами с плоской рабочей поверхностью (рис. 3.13).


Затем, увеличение высоты hЯt (рис. 3.13, а) и диаметра dЯt
(рис. 3.13, б) ядра также происходит плавно. Градиент изменения температуры по координате z изменяется аналогично предыдущим случаям, соответственно изменяется и azt (рис. 3.13, а). Отличия носят лишь количественный характер. Градиент же изменения температуры по координате r, в отличие от предыдущих случаев, в начале процесса сварки меньше чем в конце и монотонно возрастает в процессе формирования соединения. Это предопределяет несколько большие начальные значения диаметров ядра (рис. 3.13, б) и увеличение значений art в процессе сварки (рис. 3.12, б).

Конечно, полученные таким образом значения коэффициентов azt и art весьма приближённы, но, как показали сравнения расчётных и экспериментальных значений температуры и размеров ядра, приемлемы для решения приближенных технологических задач. Для практических расчетов полученные значения коэффициентов azt и art обобщены аппроксимированными функциями, описывающими их изменение в процессе формирования соединений (зависимости (3.35) и (3.36)). Значения коэффициентов m1, n1, m2 и n2, необходимые для расчетов температуры в зоне формирования соединения по данному расчетно-экспериментальному методу, для различных условий сварки обобщены в табл. 3.2 [215, 217].

Таблица 3.2

Значения коэффициентов m1, n1, m2 и n2 для расчетов температуры в зоне формирования соединения при различных условиях сварки

Условия точечной сварки

Значения коэффициентов*)

m1

n1

m2

n2

Электродом со сферической рабочей поверхностью

1,9...2,1

0,5...0,7

1,4...2,1

0,5...0,7

Электродом с плоской рабочей поверхностью

1,6...1,9

0,35...0,45

1,9...2,1

0,45...0,55

С обжатием периферии сварной точки

1,2...1,8

0,25...0,35

0,05...0,8

0,35...0,45

*) Большие значения относятся к более жестким режимам


Изменение температуры в процессе КТС в различных точках зоны сварки, рассчитанное по данному расчетно-экспериментальному методу, в частности, в центре контакта деталь–деталь, в контакте электрод–деталь вполне согласуется с имеющимися данными, полученными экспериментально (осциллографированием) и расчетами методом конечных разностей и конечных элементов (рис 3.14).


Так, температура в центре контакта деталь–деталь (кривая 1) быстро, за время равное 0,1...0,2 tСВ, нарастает до температуры, близкой к температуре плавления, а затем рост температуры замедляется. Причем изменение температуры в центре контакта деталь–деталь, рассчитанное по формулам (3.34) и (3.36) совпадает. Это объясняется тем, что она не зависит от координат, т. е. градиента температуры в зоне сварки, и фактически определяется зависимостью (3.33). Изменение же температуры в контакте электрод–деталь, рассчитанное по зависимости (3.36) (кривая 2), ближе к экспериментальным результатам (кривые 3), чем рассчитанное по зависимости (3.34) (кривая 4), поскольку она учитывает различия градиента температуры в разных точках зоны сварки.


Температурное поле в зоне сварки по координатам и времени отличается весьма высоким градиентом температур (рис. 3.15).

Характер изменения температурного поля по координатам и времени вполне соответствует имеющимся данным, полученным как экспериментально, так и решениями дифференциальных уравнений методами конечных разностей и конечных элементов.

3.3.2 Методики расчетного определения размеров ядра и средних
значений температуры в зоне сварки

При решении большинства технологических задач КТС, в частности определения силовых параметров режимов сварки, возникает необходимость в расчетном определении размеров ядра (как правило, его диаметра и высоты) и средних значений температуры в определенных участках зоны формирования соединения.

Размеры ядра расплавленного металла можно определить по положению изотермы температуры плавления, в частности, высоту hЯt и диаметр dЯt ядра можно определить по координатам пересечения изотермы температуры плавления ТПЛ с координатными осями z и r. Положение изотермы любой температуры в зоне формирования соединения в любой момент времени можно определить из зависимости (3.36), если значение температуры изотермы ТИ подставить в ее левую часть. После преобразований получаем выражение:

,                 (3.39)

которое является общеизвестным [208] уравнением эллипса, но только с изменяющимися по времени полуосями.

Например, расположение изотерм (рис. 3.16), показанных сплошными линиями и рассчитанных по зависимости (3.39) для тех же условий сварки, для которых они рассчитывались в работе [165] решением дифференциальных уравнений методом конечных разностей (пунктирные линии), почти совпадают между собой. В частности, в приведенном примере положение изотермы ТИ = 600 ºС показывает контур ядра расплавленного металла (температура плавления ТПЛ сплава АМг6 ~ 623 ºС). Причем изотерма ТИ = 600 ºС, рассчитанная по зависимости (3.39), в большей мере совпадает с контуром ядра, определённым по макрошлифу. Это объясняется тем, что расчетно-экспериментальный метод закладываются конечные размеры (высота hЯ и диаметр dЯ) ядра. Таким образом, при ТИ = ТПЛ зависимость (3.39) описывает контур ядра расплавленного металла:

.

Поскольку полуоси эллипса изотермы температуры плавления равны половине высоты  и диаметра  ядра, то по этой зависимости можно определить их значения в любой момент времени t процесса формирования ядра. После преобразований получены формулы для расчета высоты hЯt и диаметра dЯt ядра в любой момент времени t после начала плавления металла (времени tНП, которое можно определить по зависимости (3.37)) до окончания импульса сварочного тока (при tНП< ttСВ) [217]:

,                                     (3.40)

,                                     (3.41)

где azt и art — коэффициенты, характеризующие изменение градиентов температуры по координатам z и r, которые можно определить по зависимости (3.36) с использованием данных табл. 3.2.

Изменение высоты и диаметра ядра в процессе его формирования, рассчитанные по формулам (3.40) и (3.41), вполне согласуются с данными, полученными из практики КТС (рис. 3.17). Данные формулы дают удовлетворительную сходимость расчетных и экспериментальных результатов (показаны точками), расхождение которых не превышает ± 10 %.


Среднюю температуру по одной из координат z или r, или же по участку плоскости z r в момент времени t можно определить из зависимости (3.36), используя общеизвестную [208] теорему о среднем, согласно которой средняя температура по координатам z или r на участках z2 z1 или r2 r1, а также по элементу площади SПt в плоскости z r, может быть выражена следующими зависимостями:

,

,

.

Точные вычисления средних значений температуры в зоне сварки по приведенным выше зависимостям невозможны из-за того, что интегралы вида , которые содержатся в вышеуказанных зависимостях, при четных значениях n аналитически не вычисляются [208]. В таких случаях, как правило, подобные интегралы путем подстановок сводят к интегралам, значения которых вычислены приближенными методами. Для данного случая наиболее подходящим из вышеуказанных является интеграл вида erf (y), который называют erf-функцией или функцией ошибок. Его табличные значения приведены справочниках, например, в [208].

После подстановок, вычисления интегралов и преобразований зависимости для количественных расчетов средних значений температуры в зоне сварки по координатам z или r, а также по площади SПt в плоскости
z r, имеют следующий вид:

,        (3.42)

,               (3.43)

,       (3.44)

где для момента времени t, Т(z,t)ср — средняя температура по координате z на участке z2z1 при любом значении r; Т(r,t)ср — средняя температура по координате r на участке r2r1 при любом значении z; Т(z,r,t)ср — средняя температура по любому прямоугольному элементу площади  в плоскости оси электродов zr; erf (y) функция ошибок, которая представляет собой интеграл вида

.

Для распределения температуры в зоне сварки Tz и Tr по координатам z и r (рис. 3.18), рассчитанного по зависимости (3.36) для момента окончания нагрева, значения средней температуры по координатам z и r в пределах ядра расплавленного металла (кривая 1), на оси электродов от границы ядра hЯ до поверхности листа, толщиной s (кривая 2), в плоскости свариваемого контакта между границами ядра dЯ и пояска dП (кривая 3), рассчитанные по зависимостям (3.42) и (3.43), а также значение средней температуры в плоскости z r по площади зоны сварки, которая ограничена уплотняющим пояском dП и поверхностью свариваемых деталей, рассчитанное по зависимости (3.44) при z1 = r1 = 0, z2 = s, r2 = dП, вполне соответствует существующим представлениям о нагреве металла в процессе формирования точечного сварного соединения.


Таким образом, данный расчетно-экспериментальный метод оценки теплового состояния зоны КТС на стадии нагрева во время действия импульса сварочного тока при относительной простоте расчета, позволяет достаточно точно оценить температуру в любой точке зоны сварки в любой момент процесса формирования точечного сварного соединения. При этом зависимости, выражающие изменение температуры по координатам и времени, являются непрерывными аналитическими функциями и позволяют производить операции математического анализа.

3.4. Математические модели силового взаимодействия деталей
в площади свариваемого контакта при формировании соединения

Согласно принятым моделям термодеформационного равновесия процесса точечной сварки без обжатия (рис. 3.1) и с обжатием (рис. 3.3) периферийной зоны соединения силовое взаимодействие деталей, сжимаемых электродными устройствами, в площади контура уплотняющего пояска осуществляется металлом, который находится в твёрдой (до начала плавления во всей площади контура уплотняющего пояска) или в твёрдой (после начала плавления в площади уплотняющего пояска, окружающего ядро) и жидкой (в площади ядра расплавленного металла) фазах. Поэтому основными задачами математического моделирования взаимодействия деталей в площади свариваемого контакта при формировании соединения является определение напряжений в площадях контактов, в которых металл находится в твёрдой фазе, и давления в ядре.

3.4.1. Методика расчета среднего значения нормальных напряжении в контакте деталь - деталь

Точно рассчитать распределение напряжений в контактах при КТС по-видимому не представляется возможным из-за сложности и динамичности, протекающих в них термодеформационных процессов. Приближённое решение данной задачи [206, 217, 218] основано на допущении, что характер распределения напряжений в контакте деталь–деталь при точечной сварке подобен характеру распределения напряжений в контакте пуансон–деталь при осадке полосы. Это предположение сделано на основании анализа опубликованных работ С. И. Губкина, Е. П. Унксова, В. В. Соколовского и других исследователей, посвященных определению напряжений в контактах. Ими установлено, что в общем случае в площади контакта имеется три участка, которые отличаются распределением касательных напряжений (рис. 3.19). Качественно такой характер распределения нормальных напряжений в контактах электрод–деталь и деталь–деталь при точечной сварке подтверждается экспериментами по затеканию (пластической деформации) металла в узкую щель в электроде (рис. 3.20) и характером деформации периодического рельефа на поверхности детали (рис. 3.21).

Можно предположить, что и при сварке в площади контакта в момент времени t имеется три участка (рис 3.19 и 3.22), отличающихся распределением касательных напряжений τ, подобно осадке полосы [219]:

1) зона скольжения (участки a1b1 и b2a2) ;

2) зона торможения (участки b1c1 и c2b2) ;

3) зона застоя (участки c1о и оc2) ;

где σZ — напряжения, нормальные к плоскости свариваемого контакта;
μ — коэффициент трения; r — радиальные координаты точек в плоскости поверхности деталей.


Наличие таких участков в контактах при КТС экспериментально подтверждается, например, в работе [129].

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.