Рефераты. Анализ погрешностей волоконно-оптического гироскопа








3. Методы компенсации погрешностей.

 

 

3.1. Компенсация паразитной поляризационной модуля­ции  в волоконно-оптическом гироскопе

 

 

Паразитная поляризационная модуляция, сопровождающая работу волоконных и интегрально-оптических фазовых модуляторов, является серьезным фактором, ограничивающим точностные характери­стики волоконно-оптического гироскопа .

Одним из путей умень­шения паразитной поляризационной модуляции может быть изготовле­ние фазового модулятора в виде двух номинально идентичных поло­вин, между которыми устанавливается модовый конвертор, преобразую­щий поляризационные моды друг в друга. При этом дифференциальная фазовая модуляция поляризационных мод, возникшая в первой поло­вине фазового модулятора, компенсируется дифференциальной фазовой модуляцией противоположного знака, имеющей место во второй поло­вине модулятора.

При изготовлении фазового модулятора из одномодо­вого волоконного световода модовый конвертор может быть реализован с помощью соответствующим образом расположенных сжимателей во­локна, в виде двойной симметричной скрутки участка волокна определенной длины, сварного или клеевого соединения волокон с разворотом их осей двулучепреломления на 90° и т. п.

Поскольку, однако, трудно добиться полной идентичности упомянутых половин фазового мо­дулятора и условий, в которых они находятся, такой метод компенсации паразитной поляризационной модуляции во многих случаях оказыва­ется недостаточно эффективным.

Ситуация существенно улучшается, если фазовый модулятор устроен таким образом, что после конверсии поляризационных мод излучение без временной задержки снова проходит в прямом или обратном направлениях по тому же оптическому пути, что и до конверсии. Технически, по-видимому, проще обеспечить обратное прохождение излучения. Поэтому мы ограничимся рассмотрением только этой возможности, и будем называть соответствующий фазовый модулятор модулятором отражательного типа.

Матрицу Джонса модового конвертора в фазовом модуляторе отражательного типа, с точностью до множителя, можно представить в виде

 


              или                  (3.1)          



В первом случае вся картина поля поворачивается на 90°, а во втором поля мод поворачиваются навстречу друг другу. Предположим, что мы имеем дело с модовым конвертором первого типа. Обозначив матрицу Джонса отрезка волокна (или интегрально-оптического волновода), на котором осуществляется модуляция N(t), будем иметь для матрицы Джонса всего фазового модулятора M1 (t ) (штрихом обозначена операция транспонирования):



                        M1 (t) =N / (t)K1 N(t) = [detN(t )] K1                        (3.2)



При записи (3.2.) был использован тот факт, что матрицы Джонса взаимных элементов для встречных направлений распространения излучения связаны друг с другом операцией транспонирования.

Из (3.2) видно, что временная зависимость матрицы Джонса модулятора содержится только в численном фазовом множителе, откуда и

следует, что паразитная поляризационная модуляция в рассматриваемом случае отсутствует. Заметим, что при этом устраняется любой из типов паразитной поляризационной модуляции, в том числе и за счет модуляции дихроизма, причем эффективность фазовой модуляции удваивается по сравнению со случаем однократного прохождения излучения по модулирующему отрезку волокна или интегрально-оптического волновода.












 

 


Рис 3.1. Вариант включения отражательного фазового модуля-  тора в схему волоконно-оптического гироскопа.



Возможная реализация отражательного фазового модулятора с модовым конвертором первого типа на основе Фарадеевского зеркала и способ его включения в схему интерферометрического волоконно-оптического гироскопа показаны на рисунке; отражательные фазовые модуляторы 3, 3ò  , состоящие из модулирующих отрезков волокна или интегрально-оптического волновода 5, 5ò , ячеек Фарадея с углом вращения 45° 6, 6ò и зеркал 7, 7ò , выделены на этом рисунке штриховой линией.

В схеме интерферометрического волоконно-оптического гироскопа кроме контурного направленного ответвителя 1 используется еще один направленный ответвитель 4, с помощью которого и осуществляется включение в чувствительный контур 2 волоконно-оптического гироскопа одного или двух фазовых модуляторов отражательного типа.

При использовании в интерферометрическом волоконно-оптическом гироскопе двух фазовых модуляторов частоты модуляции и законы изменения фазы в модуляторах могут быть как одинаковыми, так и различными. Оптические длины путей с заходами в модуляторы 3 и 3ò могут быть либо одинаковыми, либо отличаться на величину, существенно превышающую длину когерентности источника излучения. Это открывает дополнительные возможности в обработке сигнала интерферометрического волоконно-оптического гироскопа и его конструктивных решений.    

Очевидно, что в интерферометрическом волоконно-оптическом гироскопе не обязательно устанавливать два фазовых модулятора.

При установке только одного фазового модулятора свободный выход направленного ответвителя 4 может быть использован для других целей. Для исключения влияния отраженного сигнала источник излучения должен подключаться к оптическому тракту волоконно-оптического гироскопа через оптический изолятор (на рисунках не показан). При использовании в фазовом модуляторе модового конвертора второго типа вместо (3.2) будем иметь:


                                   

    (3.3)



Здесь  = (t) (i, j = 1 , 2) - элементы матрицы N(t ), введенной выше.  Из (3) следует, что, в отличие от предыдущего случая, паразитная поляризационная модуляция при произвольной матрице N(t) не устраняется.

 Предположим, однако, что элементы N(t ) удовлетворяют соотношениям   . Тогда вместо (3.2) имеем


                           M2(t ) = [ per N (t) ] K2                                                                             (3.4)


где per N (t ) = n11 n22 + n12 n21 - перманент матрицы N(t ).


Таким образом, если равенства (3.4) имеют место, то и в модуляторе с модовым конвертором второго типа паразитная поляризационная модуляции будет устраняться.

Рассмотрим один частный случай. Предположим, что модулирующий отрезок волокна или интегрально-оптического волновода представляет собой линейную фазовую пластинку с азимутом быстрой оси, равным 0°. Тогда n12 = n21 = 0, так что паразитная поляризационная модуляция будет скомпенсирована.

Одна из возможных реализаций отражательного фазового модулятора с модовым конвертором второго типа представляет собой последовательное включение линейной фазовой пластинки с изменяющейся во времени фазовой задержкой и азимутом быстрой оси 0° , четвертьволновой фазовой пластинки с азимутом быстрой оси 45° и зеркала. Включение такого фазового модулятора в схему интерферометрического волоконно-оптического гироскопа может быть осуществлено так же, как и в предыдущем случае.


3.2. Компенсация избыточного шума в волоконно-оптическом гироскопе с ответвителем типа 3´3.


Один из путей повышения точности волоконно-оптических гироскопов связан с использованием в них суперфлуоресцентных волоконных источников излучения. Такие источники близки по свойствам к тепловым и характеризуются высоким уровнем избыточного шума. Эксперименты показывают, что избыточный шум доминирует над другими шумами уже при мощностях на фотодетекторе порядка 10 mW . Поэтому проблема уменьшения его влияния на точность гироскопов представляет большой интерес.

В когерентно-оптической связи для подавления избыточного шума гетеродина используется балансное детектирование. Балансное детектирование можно применить и в волоконно-оптических гироскопах, используя в качестве опорного сигнала излучение источника, задержанное на время прохождения света по оптическому тракту волоконно-оптических гироскопов.

Однако реализация балансного детектирования в обычной ”минимальной” схеме волоконно-оптических гироскопов с входным и контурным ответвителями типа 2´2 сопряжена с рядом трудностей, связанных с обеспечением когерентного взаимодействия информативного и опорного сигналов. Эта проблема решается значительно проще при использовании в схеме волоконно-оптического гироскопа направленного ответвителя типа 3 ´ 3.










 

 


Рис 3.2. Схема волоконно-оптического гироскопа с ответвителем типа 3´3.



На рис.3.2. представлена простейшая схема волоконно-оптического гироскопа с ответвителем типа 3 ´ 3. Излучение от источника (3) поступает через направленный ответвитель типа 3 ´ 3 (4) на входы чувствительного контура (5), а затем - на фотодетекторы (1) и (2), выходы которых подключены к дифференциальному усилителю (6). Каждая из встречных волн L и S в схеме (см. рисунок) является и информативной (сигнальной) и одновременно — опорной для другой волны, причем с точностью до множителя, в случае идеального направленного ответвителя имеем:


                                                  (3.5)


                                                    (3.6)


Здесь A и j - соответственно амплитуда и фаза волн, а j0-невзаимный (саньяковский) фазовый сдвиг. Сигналы, поступающие на фотодетекторы:


                                                      (3.7)


                                                                  (3.8)


где j1 - разность фаз сигналов, прошедших через направленный ответвитель по ”прямому” и ”перекрестному” каналам.

            Токи фотодетекторов (которые считаются идентичными):


         (3.9)


где n1 и n2 - шумы фотодетектирования.


На выходе дифференциального усилителя


                            (3.10)  


Таким образом, избыточный шум, обусловленный фоновой засветкой фотодетекторов, оказывается скомпенсированным. Из (3.9-3.10) следует также, что волоконно-оптический гироскоп с контурным направленным ответвителем типа 3´3 и балансным детектированием работает в квадратурном режиме, его оптический масштабный коэффициент такой же, как и в ”минимальной” схеме, однако электрический масштабный коэффициент меньше, поскольку j1 ¹ p/2.

Рассмотренная схема представляет интерес для волоконно-оптического гироскопа грубого и среднего классов точности. Для волоконно-оптических гироскопов высокой точности можно использовать модифицированную ”минимальную” схему с направленным ответвителем типа 3´3. В этом случае в оба канала включаются дополнительные элементы 7, 8, обеспечивающие возможность повышения точности устройства за счет снижения уровня поляризационных шумов, устранения паразитной модуляции и других неблагоприятных факторов, рассмотренных в дипломной работе. 

           

3.3.  Компенсация обратного рэлеевского рассеяния        

 

           

Обратное рэлеевское рассеяние (основной механизм потерь в волокне с низкими потерями) является важным фактором, который может существенно снижать чувствительность ВОГ.

Сущность этого эффекта состоит в том, что каждая первичная волна, противоположно распространяющаяся в световодном контуре, возбуждает маломасштабные неоднородности в волокне, которые в свою очередь действуют как индуцированные дипольные излучатели. Световод «захватывает» часть рассеянного излучения и канализирует его в обратном направлении.

 


















Рис 3.3. Обратнорассеянные волны в контуре ВОГ (схема).



Вклады от каждого элементарного рассеивателя суммируются векторно и образуют полное рассеянное поле в каждом направлении. Если контур не возмущен, то амплитуда и фаза поля стабильны во времени. Поскольку элементарные рассеиватели распределены случайно вдоль волокна, можно оценить лишь среднеквадратическое значение амплитуды каждой обратнорассеянной волны относительно полной обратнорассеянной мощности.

Предсказать фазу каждой волны весьма затруднительно. Обратнорассеянные волны обладают некоторой степенью когерентности относительно двух первичных волн и поэтому суммируются с первичными волнами также векторно со случайными фазами. Фазы результирующих двух волн в общем случае из-за влияния окружающих условий не идентичны (рис. 3.3.).

Следовательно, на выходе волоконного контура появляется составляющая фазового сдвига, обусловленная обратным рэлеевским рассеянием, и при любом одиночном измерении неразличимая от фазы, индуцированной вращением контура (фазы Саньяка), т. е. появляется ошибка в измерении угловой скорости вращения контура.


 












Рис 3.4. Обратнорассеянные волны в контуре ВОГ (векторная диаграмма).


Интерес представляет оценка ошибки ВОГ, обусловленной обратным рэлеевским рассеянием. Оценить неопределенность измерения фазы Саньяка и соответственно ошибку в измерении угловой скорости, обусловленной обратным рэлеевским рассеянием, можно по упрощенной методике, предложенной в работе [4].

Полагаем, что затухание излучения в волокне  обусловлено рэлеевским рассеянием (  коэффи­циент ослабления, L - длина контура). При этом теряе­мая энергия равномерно рассеивается по длине волокна с коэффициентом направленного рассеяния G вдоль волок­на (1 < G < 1,5). Для равномерно рассеянного излучения приближенно справедлив закон Ламберта.

Учитывая эти условия, можно получить отношение мощности части от полного рассеянного излучения, «перехватываемой» во­локонным сердечником, и появляющегося на выходе кон­тура, к мощности первичной волны на выходе контура ( векторная диаграмма на рис. 3.3.):

       (3.11)


В соотношении (3.11) PS - мощность обратнорассеянной (вторичной) волны на выходе контура, P1 - мощность пер­вичной (сигнальной) волны после одного прохождения в контуре, P0 - мощность излучения на входе одного плеча контура, - телесный угол ввода излучения волокон­ного сердечника  ( b -  линейный угол).


Величину    можно разложить в ряд Маклорена, и при малом   ограничиться двумя первыми членами раз­ложения. Тогда получим


                                                                  (3.12)



Как следует из векторной диаграммы (рис. 3.4.), при ком­бинации двух пар противоположно распространяющихся в контуре волн максимальное приращение фазы, обуслов­ленное эффектом обратного рассеяния, можно выразить в виде


               (3.13)



Это значение фазы, полученное при одиночном измерении, приводит к ошибке в измерении угловой скорости враще­ния. Для определения угловой скорости вращения, соответ­ствующей этому значению фазы (эквивалентной ошибке измерения угловой скорости), используем ранее получен­ную формулу Саньяка:


                                                                         (3.14)


  Имеем

                                               (3.15)


где N  -  число витков контура; D -  диаметр витка.

Подставляя N=L / pD в это выражение, имеем


                                                                    (3.16)




Для получения численной оценки используем следующие значения параметров:


            l = 1 мкм,

          N = 318,

          D = 1 м,

            b = 0.1 рад,

            G = 1,

            L = 1000 м .


Подставляя эти значения, получаем максимальную фазовую ошибку при одном обходе контура  рад, которая линейно преобразуется в ошибку измерения угловой скорости  = 341 град/ч ( 0.095 град/с). Полученный результат свидетельствует о значительности ошибки и приводит к выводу о необходимости применения специальных мер или использования устройств, минимизирующих ошибку, обусловленную обратным рэлеевским рассеянием.

Способы минимизации ошибки ВОГ, обусловленной обратным рэлеевским рассеянием могут быть связаны с уменьшением взаимной когерентности между первичной и вторичной (рассеянной) волной. При этом, однако, ряд способов, уменьшающих  когерентность, одновременно уменьшают взаимность между двумя первичными волнами, что весьма нежелательно. Но такие способы, как частотная модуляция первичного сигнала или физическая моду­ляция длины контура (контролируемым образом), умень­шая когерентность, не вносят дополнительной невзаимно­сти в контур.

 Если эффективность модуляции достаточно высока, т. е. если в отсчетный интервал времени число длин волн, укладывающихся на длине контура, изменяется зна­чительно, то вторичная (рассеянная) волна суммируется с появляющейся первичной волной со случайной фазой. Ес­ли измерение осуществляется с частотой q в единицу вре­мени и если фаза вторичной волны изменяется случайно между отсчетами, то неопределенность углового положения контура по истечении данного интервала времени опреде­ляется процессом «случайного блуждания» и дается вы­ражением :


                           (3.17)


Для приведенных выше численных значений контура ВОГ, приняв q = 10 отсч./с. и интегрируя в течение часа, полу­чается ошибка (экстраполированный дрейф) 1,27 град/ч1/2.

Следует отметить, что в существующих ВОГ ошибка, обусловленная обратным рассеянием, уменьшается за счет некоторых неизбежно присутствующих факторов, еще не­достаточно изученных, но уменьшающих степень когерен­тности между первичной и вторичной волнами .

Например, во многих системах ВОГ используется модуляция излучения, которая может рандомизировать до некоторой степени фазу рассеяной волны,  хотя  эта модуляция может ис­пользоваться в ВОГ для совершенно других целей (к приме­ру  для удобства регистрации сигнала). Некоторая сте­пень рандомизации фазы неизбежно имеет место вследст­вие механических и тепловых воздействий на волоконный контур; эти воздействия, однако, производят другие ошиб­ки (если они не полностью взаимны). Изменения частоты лазерного излучателя также могут быть источником рандомизации.

Все же, несмотря на указанные факторы, вклад в общую ошибку ВОГ эффектами обратного рассеяния может быть еще значительным или даже доминирующим.  При непрерывном совершенствовании конструкции ВОГ чувствительность последнего к механическим и теп­ловым возмущениям будет уменьшаться, естественно ожидается неизбежное увеличение степени когерентности рас­сеянных волн. Эффекты остаточных влияний окружающих условий (механических и температурных изменений) раз­виваются медленно, что не позволяет выбрать частоту не­зависимых случайных отсчетов достаточно высокой для существенного уменьшения ошибки, обусловленной обрат­ным рассеянием. Частоту отсчетов нужно выбирать так, чтобы вторичные (рассеянные) волны были некоррелиро­ваны по фазе.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.