Поверхность нагрева отопительных приборов в однотрубных системах отопления рассчитывается с учетом температуры теплоносителя на входе в каждый прибор , , количества теплоносителя, проходящего через прибор , , и величины тепловой нагрузки прибора , .
Расчет площади каждого отопительного прибора осуществляется в определенной последовательности:
1. Вычерчивается расчетная схема стояка, принимается тип отопительного прибора и место установки, схема подачи теплоносителя в прибор, конструкция узла прибора. На расчетной схеме проставляются диаметры труб, тепловая нагрузка прибора, равная теплопотерям , .
2. Определяем суммарное понижение расчетной температуры воды на участках подающей магистрали от начала системы до рассматриваемого стояка.
3. Рассчитывается общее количество воды, , циркулирующей по стояку, по формуле:
(VI.1)
где коэффициент, принимаемый по [1, табл.62];
коэффициент, принимаемый по [1, табл.64];
температура горячей воды в подающей магистрали системы отопления, ;
температура воды в обратной магистрали системы отопления, ;
теплоемкость воды, равная ;
суммарные теплопотери в помещениях, обслуживаемых стояком, .
4. Определяется температура воды, , на входе в каждый отопительный прибор по ходу движения теплоносителя с учетом :
Для первого прибора
(VI.2)
Для второго прибора
(VI.3)
Для третьего прибора
(VI.4)
и т.д.
5. Рассчитывается расход воды, , проходящий через каждый отопительный прибор , , с учетом коэффициента затекания по формуле:
(VI.5)
где коэффициент затекания воды в отопительный прибор, определяемый по [4, табл. 9.3].
6. Определяется средняя температура воды, , в каждом отопительном приборе по ходу движения теплоносителя [5, с. 156]:
(VI.6)
(VI.7)
(VI.8)
7. Рассчитывается средний температурный напор в каждом отопительном приборе по ходу движения теплоносителя, :
(VI.9)
(VI.10)
(VI.11)
8. Определяется плотность теплового потока, , для каждого отопительного прибора по ходу движения теплоносителя:
(VI.12)
(VI.13)
(VI.14)
9. Рассчитывается полезная теплоотдача, , труб стояка, подводок к отопительным приборам, проложенным в помещении:
(VI.15)
(VI.16)
(VI.17)
При определении теплоотдачи 1 неизолированных труб по [4, табл. 11.22 и 11.24] разность температуры теплоносителя и воздуха в помещении в однотрубных системах отопления принимают с учетом температуры теплоносителя на входе в отопительный прибор, т.е. .
10. Определяется требуемая теплопередача отопительного прибора, , в помещении с учетом полезной теплоотдачи проложенных в помещении труб:
(VI.18)
(VI.19)
(VI.20)
11. Вычисляется расчетная наружная площадь, , отопительного прибора по ходу движения теплоносителя:
(VI.21)
(VI.22)
(VI.23)
После определения по каталогам или по [4, прил. X, табл. XI] выбирают ближайший типовой размер прибора (число секций, радиаторов, количество панелей стальных радиаторов, длину конвектора, ребристой трубы, регистра из гладких тру).
2. Расчет размера и числа отопительных приборов в системах водяного отопления.
По каталогу приборов или по [4, прил. X, табл. XI], исходя из расчетной площади, подбирают ближайший типоразмер прибора.
Число секций чугунных радиаторов, , определяют по [4, табл. 9.13]:
(VI.24)
где площадь одной секции радиатора, , принимаемая по [4, прил. X, табл. 9.12];
поправочный коэффициент, учитывающий способ установки отопительного прибора [9, табл. 9.12];
поправочный коэффициент, учитывающий число секций в одном радиаторе;
Число панельных радиаторов типа РСВ1 и РСВ2 рассчитываются по формуле:
(VI.25)
Для увеличения площади прибора отдельные панельные радиаторы объединяют в блоки из двух параллельно расположенных панелей. При этом расчетную площадь увеличивают, принимая понижающий коэффициент теплопередачи прибора.
Размеры конвекторов с кожухом определяются в зависимости от расчетной площади принятого типа конвектора по [4, прил. X, табл. X.1].
Число элементов конвекторов без кожуха или ребристых труб в ярусе по вертикали или в ряду по горизонтали определяется по формуле:
(VI.26)
где число ярусов или рядов элементов, составляющих прибор;
площадь одного элемента конвекторов или одной ребристой трубы принятой длины, , выбираемая по [4, прил. X, табл. X.1].
Длина греющей трубы в ярусе или в ряду гладкотрубного прибора рассчитывается по формуле:
(VI.27)
где поправочный коэффициент, учитывающий способ установки отопительного прибора [4, табл. 9.12];
число ярусов или рядов греющих труб, составляющих прибор;
площадь одного метра открытой горизонтальной трубы принятого диаметра, , определяемая расчетом.
При округлении дробного числа элементов приборов любого типа до целого допускается уменьшить их расчетную площадь не более чем на 5% (но не более чем на 0,1). При других условиях принимается ближайший нагревательный прибор.
Результаты расчета сводим в таблицу 2 приложения.
VII. Подбор нерегулируемого водоструйного элеватора типа ВТИ Мосэнерго
Водоструйные элеваторы предназначены для снижения температуры воды, поступающей из тепловой сети в систему отопления, до необходимой температуры путем ее смешивания с водой, прошедшей систему отопления. Наиболее совершенным являются элеватор типа ВТИ Мосэнерго (КПД-0,24) со сменным соплом.
1. Определяем коэффициент смешивания:
, (VII.1)
где - температура воды в подающем трубопроводе тепловой сети,
- температура горячей воды в подающем трубопроводе системы отопления, ;
- температура горячей воды в обратном трубопроводе системы отопления, ;
.
2. Определяем расход воды, поступающей в элеватор из тепловой сети, :
, (VII.2)
где полные теплопотери здания, Вт;
- дельная теплоемкость воды, равная ;
3. Определяем расход воды, поступающей в местную систему отопления после смешивания в элеваторе, :
. (VII.3)
4. Определяем расход инжектируемой воды, :
, (VII.4)
5. Определяем проводимость, :
, (VII.5)
где - потери давления в системе отопления, Па, принимаемые по данным гидравлического расчета;
6. Определяем оптимальный размер камеры смешивания, :
, (VII.6)
По найденному значению подбираем элеватор №3 [1, табл. 32]
Диаметр выходного сечения сопла находится по уравнению, :
(VII.7)
где поправочный коэффициент (обычно ).
Определение производится методом последовательного приближения. Для этого предварительно задаются величиной и определяют . После этого производится проверка принятого значения .
Подбор основных размеров элеваторов (номер элеватора, , ) предлагается определять по номограмме [1, рис. 49]. Выбор номера элеватора, и производится по известным значениям , или .
Для использования одного и того же корпуса элеватора при различных расходах воды и давлений сопло делают сменным.
VIII. Расчёт естественной вентиляции
В настоящее время в жилищном строительстве почти исключительно используются системы вентиляции с естественным побуждением.
В канальных системах естественной вытяжной вентиляции воздух перемещается в каналах и воздуховодах под действием естественного давления, возникающего в следствии разности холодного наружного и тёплого внутреннего воздуха.
1. Определяем естественное давление, :
, (VIII.1)
где - высота воздушного столба, принимаемая от центра вытяжного отверстия до устья вытяжной шахты, ;
- плотность соответственно наружного и внутреннего воздуха, :
. (VIII.2)
Расчётное естественного давления для систем вентиляции жилого здания, согласно СНиП 2.04.05-91. «Отопление, вентиляция и кондиционирование», определяется для температуры наружного воздуха .
Для нормальной работы системы естественной вентиляции необходимо сохранение равенства:
, (VIII.3)
где - удельная потеря давления на трение, ;
- длина воздуховодов (каналов), ;
- потеря давления на трение расчётной ветви,
- потеря давления на трение расчетной ветви, ;
- коэффициент запаса, равный 1,1-1,15;
- поправочный коэффициент на шероховатость поверхности;
- располагаемое давление, ;
Вентиляционные решетки размещаются на расстоянии 0,3 м от потолка.
2. Задаваясь скоростью движения воздуха , , вычисляем предварительное живое сечение сечения канала и вытяжной решётки, :
, (VIII.4)
где - объём вентиляционного воздуха, перемещаемого по каналу, [2, табл. 25];
- скорость движения воздуха, .
3. Определив предварительное живое сечение канала по [2, табл. 26], уточняем его и находим фактическую скорость движения воздуха, :
. (VIII.5)
Выбираем размеры вентканалов , эквивалентный диаметр , и площадь поперечного сечения .
4. Далее находим эквивалентный диаметр, канала круглого сечения, равновеликий прямоугольному по скорости воздуха и потерям давления на трение, :
, (VIII.6)
где - размеры сторон прямоугольного канала, [2, табл. 26].
5. Используя номограмму [2, прил.8], по известным значениям и определяем удельные потери давления , и динамическое давление
6. Определяем потери давления на трение с учётом коэффициента шероховатости стенок канала [2, табл. 27].
7. Находим потери давления в местных сопротивлениях, :
, (VIII.7)
Где - коэффициент местных сопротивлений на участках [2, табл. 28].
8. Сравниваем суммарные потери давления в каналах и . Если условия проверки не выполнено, то изменяем размеры канала.
Результаты вычислений сводим в таблицу 3 приложения.
Список использованных источников:
1. Ерёмкин А.И, Королев Т.И. Тепловой режим здания - М.: издательство АСВ, 2003. – 367с.
2. Ерёмкин А.И, Королев Т.И, Орлова Н.А. Отопление и вентиляция жилого здания: Учебное пособие. - 2-е издание. – М.: Издательство АСВ, 2003. – 142с.
3. СНиП 2.04.05-91. Отопление, вентиляция и кондиционирование. – М.: Стройиздат, 1992. – 64с.
4. Справочник проектировщика. Ч. 1. Отопление. / Под ред. И.Г. Староверова и др. – М.: Сройиздат,1990. – 343с.
5. Богословский В.Н., Сканави А.Н. Отопление. – М.: Стройиздат, 1991. – 735с.
6. ГОСТ 21.602-2003. Правила выполнения рабочей документации отопления, вентиляция и кондиционирования воздуха. – 2003. – 50с.
7.СТП 101-00 Общие требования и правила оформления выпускных квалификационных работ, курсовых проектов (работ), отчетов по РГР, по УИРС, по производственной практике и рефератов. - ОГУ.: О издательство ОГУ 2000. – 65с.
8. СТО НП «АВОК» 1.05-2006 Условные графические обозначения в проектах отопления, вентиляции, кондиционирования воздуха и теплохолодоснабжения - 2006. - 39с.
ПРИЛОЖЕНИЕ
Табл. 1 Гидравлический расчёт.
Исходные данные
Расчетные данные
Номер участка
Тепловая нагрузка на участке Q, Вт
Температурный перепад Dt=t1-t0, 0C
Расход воды на участке G, кг/ч
Длина участка l, м
Диаметр участка dу, мм
Удельное сопротивление на трение на участке R, Па
Скорость теплоносителя v, м/с
Сумма коэффициентов местных сопротивлений на участке Σξ, Па
Потери давления на трение на участке Rl, Па
Потери давления на местные сопротивления на участке Z, Па
Общие потери давления на участке Σ(Rl+Z), Па
Суммарные потери давления в главном циркуляционном кольце Σ(Rl+Z), Па
1
2
3
4
5
6
7
8
9
10
11
12
13
Через стояк №13(главный циркуляционный)
120770
35
3156,3
1,6
40
174
0,676
278
1795
2073
64060
1674,2
9,2
25
0,82
368
658
1026
3099
28460
743,8
4,15
20
325
0,596
1349
1736
3085
6184
12840
335,6
5,9
70
0,268
413
448
6632
8630
225,5
2,7
33
0,181
21,7
89
352
441
7073
3,2
8,4
106
128
234
7307
7541
7775
8009
8243
8477
8711
8945
14
1,7
5,4
56
85
141
9086
13'
9320
12'
9554
11'
9788
10'
10022
9'
10256
8'
10490
7'
10724
6'
10958
5'
3,85
19,7
127
320
447
11405
4'
4,45
312
347
11752
3'
5,6
1820
2488
4308
16060
2'
101
0.468
909
427
1336
17396
1'
1,5
50
46
0.404
69
558
627
18023
100,85
7486
10537
Через стояк №12
4210
110
5,55
15
0,161
23
222
287,5
509,5
0
637,5
765,5
893,5
1021,5
1149,5
1277,5
1405,5
1533,5
68
50,1
118,1
1651,6
8,8
113
241
1892,6
2133,6
2374,6
2615,6
2856,6
3097,6
3338,6
3579,6
24,65
300
522
4101,6
64
2560
1541,6
Через стояк №11
15620
408,2
29
0,2
17,5
78
315
393
7,5
93
136
229
622
851
1080
1309
1538
1767
1996
2225
49
98
147
2372
2601
2830
3059
3288
3517
3746
3975
4204
2,8
15,5
81
276
357
4561
58,4
1696
2865
Страницы: 1, 2, 3, 4, 5, 6