Рефераты. Перевод на природный газ котла ДКВР 20/13 котельной Речицкого пивзавода






 На выходе из дымовой трубы состав окислов азота почти не изменяется по сравнению с топочной камерой, т.е состоит из NO,и только в атмосфере может происходить процесс его постепенного доокисления .

 Наибольший выход окислов азота характерен для высококалорийных сортов топлива ( мазут, каменный уголь, природный газ ).

 Из анализа влияния основных факторов на образование окислов азота выступают методы их подавления в топочной камере.

 При внедрении мероприятий, рассчитанных на снижение образования оксидов азота, приходится учитывать, что некоторые из них могут увеличить содержание других, не менее опасных загрязнителей. В частности при некоторых режимах сжигания газа образуются канцерогенные продукты: бензаперен и другие полициклические ароматические углеводороды. Концентрация бензаперена в дымовых газах при полной нагрузке газовых котлов составляет 1-10 мкг/100м3, причем нижнее значение соответствует крупным энергетическим котлам, а верхнее- отопительным котлам. Если учесть, что среднесуточная предельно-допустимая концентрация бензаперена в воздухе равна 0,001 мкг/м3, то становится ясным, что при нормальных условиях работы котла токсичность дымовых газов определяется в основном содержанием в них оксидов азота, и только при частичных нагрузках, главным образом, на отопительных блоках, или при нарушении нормальных режимов горения суммарная относительная токсичность продуктов неполного сгорания может оказаться сопоставимой с токсичностью оксидов азота.

 Простейшим мероприятием, снижающим максимальный уровень температуры в топке, является уменьшение нагрузки котла. Многочисленные измерения, проведенные на котлах различной мощности с горелками разных конструкций, показали, что зависимость концентрации Nox от нагрузки котла близка к степенной. Снижение нагрузки котла сопровождается снижением температур в топке за счет уменьшения объёмного тепловыделения и температуры подогрева воздуха. Снижение выходных скоростей в горелках также оказывает определенное влияние на образование Nox.

 Понятно, что снижение нагрузки котла нельзя рассматривать в качестве мероприятия по снижению выбросов оксидов азота (за исключением, может быть, случаев особо не благоприятных метеорологических условий, продолжительность которых довольно ограничена), однако влияния теплового напряжения зоны активного горения на образование оксидов азота может быть использовано конструкторами при создании новых котлов на природном газе.

 Еще одним простейшим средством снижения температурного уровня, а следовательно, и концентрации оксидов азота в дымовых газах является осуществление рециркуляции дымовых газов. При сжигании газа, когда отсутствуют слабозависящие от температуры топливные NOx ,эффективность рециркуляции газов весьма велика.

 При рециркуляции дымовых газов через горелки уменьшается также концентрация кислорода, что приводит к дополнительному снижению образования NOx . Если же подавать газы рециркуляции через шлицы в под топки, как это иногда делается для регулирования температуры промежуточного перегрева при снижении нагрузки, то их влияние на выбросы оксидов азота будет незначительно.

 Дальнейшее увеличение рециркуляции уже менее эффективно. Ограниченность применения этого метода снижения выбросов оксидов азота объясняется тем, что рециркуляция дымовых газов снижает экономические показатели (возрастают потери с уходящими газами и расход электроэнергии на собственные нужды). В тех случаях, когда рециркуляцию газов необходимо производить на уже действующих котлах, появляются дополнительные трудности, связанные с установкой дымососа рециркуляции и коробов для подачи дымовых газов к горелкам.

 Еще одним недостатком этого метода являются опасное возрастание концентрации бензапирена по мере увеличения рециркуляции дымовых газов.

 Снижение максимальной температуры в топочной камере, а следовательно, и концентрации оксидов азота, можно обеспечить увеличением теплоотвода, например за счет установки двусветного экрана или других тепловоспринимающих поверхностей нагрева в зоне интенсивного горения.

 Снижение температурного уровня за счет ввода влаги в зону горения является одним из возможных путей сокращения выбросов оксидов азота при сжигании природного газа. При этом эффективности метода зависит не только от количества вводимой в топку влаги, но и от способа ввода, а также от коэффициента избытка воздуха в топочной камере.

 Как и в случае сжигания угля или мазута, простейшим методом уменьшения концентрации оксидов азота в продуктах сгорания газа является снижение избытка воздуха, подаваемого через горелки . Сказанное относится только к тому диапазону избытков воздуха, который применяется обычно в энергетических котлах (1,1-1,2) . В случае более высоких a снижение температуры в топочной камере оказывает большее влияние на образование оксидов азота и в результате увеличение избытка воздуха сверх a=1,2 снижает концентрацию NOx в дымовых газах.

 Снижение избытка воздуха возможно лишь до тех пор, пока это не приводит к интенсивному росту продуктов неполного сгорания, когда не только уменьшается экономичность топочного процесса, но и создается опасность загрязнения атмосферы другими веществами, не менее вредными, чем оксиды азота.

 При многоярусном размещении горелок эффективным средством снижения выбросов оксида азота может оказаться нестехиометрическое сжигание.

 Другим методом нестехиометрического сжигания является ступенчатое сжигание. При этом на котлах для подачи воздуха, необходимого для полного сгорания, как правило, устанавливают отдельные горелки (обычно-верхнего яруса), если через остальные горелки удается подать количество топлива, необходимое для работы котла с номинальной нагрузкой.

Расчет выбросов оксидов азота

В условиях высокотемпературного горения топлива азот воздуха становится реакционноспособным и, соединяясь с кислородом, образует оксиды. Кроме того, образование оксидов азота в процессах горения может происходить за счет разложения и окисления азотосодержащих соединений, входящих в состав топлива. Всего азот с кислородом может образовывать шесть соединений:


N2O,NO,N2O3,NO2,N2O4,N2O5.


Наиболее устойчивым оксидом является NO2 ,в который могут переходить и другие оксиды азота, поэтому установленные нормы ПДК даются для суммы всех оксидов в пересчете на NO2 . В дымовых газах котлоагрегатов оксиды азота обычно состоят на 95-99% из оксида азота, 1-5% составляет диоксид азота, доля других оксидов азота пренебрежимо мала.

 Массовый выброс оксидов азота в пересчете на NO2 (т/г, г/с) в атмосферу с дымовыми газами котла вычисляется по формуле :


MNO2=0,34×10-7kBQрн(1-q/100)12


где1- коэффициент, учитывающий влияние на выход оксидов азота качества сжигаемого топлива (содержание Nг ), принимается равным 0,8;

k- коэффициент, характеризующий выход оксидов азота ,кг/т условного топлива;

2- коэффициент, учитывающий конструкцию горелок (для вихревых горелок 2=1);


 Коэффициент k для котлов паропроизводительностью менее 70 т/ч при сжигании мазута и газа определяется по формуле:

k=3,5Dф/70,


 где -фактическая паропроизводительность котла;

Принимается Dф=0,95D ,

 где D -номинальная паропроизводительность котла

 

 Тогда [2]:


k=3,5×,95×20/70=0,95


MДКВР-20/13NO2=0,34×10-7×9×386×7346×372× г/с


Расчет выбросов оксидов углерода.

В недостаточно совершенных топочных устройствах или при неналаженном режиме сжигания топлива часть его горючих не окисляется до конечных продуктов, а образуются продукты неполного сгорания. Наиболее вероятным продуктом неполного сгорания всех видов топлива является окись углерода CO.

Массовый выброс оксидов углерода (г/с) в атмосферу с дымовыми газами котла вычисляется по формуле


MCO=0,001CCOB(1-q4/100)


Где CCO- выход оксида углерода при сжигании топлива (кг/тыс.м3)

CCO=q3RQрн/1013


гдеq3- потери теплоты от химической неполноты сгорания топлива, 0,5 %;

R- коэффициент, учитывающий долю потери теплоты вследствие химической неполноты сгорания топлива, обусловленную содержанием в продуктах неполного сгорания оксида углерода. Для газа R=0,5;

Qрн- теплота сгорания натурального топлива ,кдж/м3 ;

q4- потери теплоты от механической неполноты сгорания топлива, %

Значения q3,q4 принимаем по данным укрупнённого расчета котлоагрегата.


CCO=0,5×0,5×37346/1013=9,21 кг/тысм3

MДКВР-20/13CO=0,001×21×386=0,003 г/с;


Определение высоты трубы производится по формуле


 


Где pп - поправочный коэффициент для расчета многоствольных труб, зависящий от числа стволов в трубе , отношения расстояния между ближайшими стволами на выходе к диаметру ствола (на выходе) и от угла наклона выходного участка выходного участка ствола к вертикальной оси . Для одноствольных труб pп =1,0.

m - коэффициент, учитывающий условия выхода из устья трубы, значения которого принимаются в зависимости от скорости W0 .

A- коэффициент, зависящий от температурной стратификации атмосферы град1/3, (для Республики Беларусь A =160)

M- суммарный выброс NO2 из всех труб котельной, г/с

F- безразмерный коэффициент, учитывающий влияние скорости осаждения примеси в атмосфере: для газообразных веществ и мелкодисперсных аэрозолей, скорость упорядоченного оседания которых практически равно нулю , F =1;

ПДК - предельно допустимая концентрация в атмосфере NO2, SO2 или золы .( По СНиП для NO2 (ПДК) равна 0,085 мг/м3)

Сф- фоновая концентрация района, устанавливаемая органами санинспекции района;

z- число дымовых труб ;

V- суммарный объём дымовых газов;

t- разность температур выбрасываемых газов и воздуха (последняя принимается по средней температуре самого жаркого месяца в полдень).

Т.к рассчитываемый котел работает на газе, то выбросов SO2 нет, расчет ведется по NO2.

Фоновую концентрацию принимаем в размере 20% от ПДК NO2. Таким образом


Сф=0,2×0,085=0,017 мг/м3.

 

Объем дымовых газов принимается по данным расчета котлоагрегата ДКВР-20/13. При сжигании объём дымовых газов выходящих за 1с из котла составит V=5,46 м3/с;

Приводя полученную цифру к нормальным условиям получим:


VДКВР-10/13 = Vк×(tух+273)/273=5,46 × (140+273)/273=6,26 м3/с.


Среднюю температуру самого жаркого месяца в полдень принимаем 25 ОС.

Высота трубы составит:

 

 


Принимается ближайшая большая труба стандартной высоты 30 м .

Диаметр устья дымовой трубы:


 ,


где :

VТРобъёмный расход продуктов сгорания через трубу при расчётной температуре их в выходном сечении,


м3/с; VТР = VД =5,46 м3/с;


wВЫХ – скорость продуктов сгорания на выходе из дымовой трубы, принимается равной 25 м/с [1].


 


По СНиП II-35-76 выбирается кирпичная дымовая труба диаметром выходного сечения 1, 2 м.


Охрана труда и экология

 Паровые и водогрейные котлы должны удовлетворять нормам и требованиям по обеспечению безопасной их эксплуатации., которые изложены в соответствующих Правилах устройства и безопасной эксплуатации паровых и водогрейных котлов.

 Конструкция котла и его основных элементов должна обеспечивать надежность и безопасность эксплуатации на расчетных параметрах в течение назначенного срока службы, а также возможность технического освидетельствования, очистки, промывки, ремонта и эксплуатационного контроля металла, фасонных и литых деталей, сварных соединений.

 Конструкция котла должна обеспечивать возможность равномерного прогрева и свободного теплового расширения его элементов при растопке и нормальном режиме работы.

 Каждый котел с камерным сжиганием топлива должен быть снабжен взрывными предохранительными устройствами, которые должны быть размещены и устроены так, чтобы при их срабатывании исключалось травмирование людей. Газоходы, через которые подаются отходящие газы, должны иметь взрывные клапаны такой конструкции, которая обеспечит безопасность обслуживающего персонала при их срабатывании. Горелочные устройства должны быть безопасны и экономичны. Должны обеспечивать надежное воспламенение и устойчивое горение топлива без отрыва и проскока пламени за пределы топки в заданном диапазоне режимов работы, не допускать выпадения капель жидкого топлива на под и стенки.

 Изготовление, монтаж, ремонт, а также реконструкция, модернизация котлов и их элементов должны выполнятся специализированными предприятиями и организациями, располагающими техническими требованиями, необходимыми для качественного выполнения работ. При изготовлении, монтаже и ремонте должна применяться система контроля качества, которая гарантировала бы выявление недопустимых дефектов, ее высокое качество и надежность в эксплуатации. Контроль качества сварки и сварных соединений включает:

1.           проверку уровня квалификации и аттестации персонала;

2.           проверку сборочно – сварочного, контрольного оборудования, аппаратуры, приборов и инструментов;

3.           контроль качества основных материалов;

4.           контроль качества сварочных материалов и материалов для дефектоскопии;

5.           операционный контроль технологии сварки;

6.           неразрушающий контроль качества сварных соединений;

7.           разрушающий контроль;

8.           контроль исправления дефектов.

 Основными методами неразрушающего контроля металла и сварных соединений котлов являются:

- визуальный и визуально – оптический;

- радиографический;

- ультразвуковой;

- капиллярный;

- прогонка металлического шара;

- гидравлическое испытание.

 При разрушающем контроле должны проводиться испытания механических свойств.

 Для управления работой котлов и обеспечения режимов эксплуатации они должны быть оснащены:

1.                устройствами, предохраняющими от повышения давления (предохранительными устройствами);

2.                указателями уровня воды (для паровых котлов);

3.                манометрами;

4.                приборами для измерения температуры среды;

5.                запорной и регулирующей арматурой;

6.                приборами безопасности.

 Каждый элемент котла, внутренний объем которого ограничен запорной арматурой, должен быть защищен предохранительными устройствами, автоматически предотвращающими повышение давления сверх допустимого путем выпуска рабочей среды в атмосферу.

 В качестве предохранительных устройств допускается применять:

1.                рычажно – грузовые предохранительные клапаны прямого действия исключая их использование в транспортабельных котельных;

2.                пружинные предохранительные клапаны прямого действия;

3.                выкидные предохранительные устройства (гидрозатворы).

 Манометры, устанавливаемые на котлах и трубопроводах в пределах котельной, должны иметь класс точности не ниже 2,5.

 У водогрейных котлов для измерения температуры воды устанавливают термометры при входе воды в котел и на выходе из него. При наличии в котельной двух и более котлов термометры, кроме того размещают на общих подающем и обратном трубопроводах.

 Арматура, установленная на котлах и трубопроводах, должна иметь маркировку с указанием:

1.        условного прохода;

2.        условного или рабочего давления и температуры среды ;

3.        направления потока среды.

 Каждый котел оборудуют следующими трубопроводами :

1.        для продувки котла и спуска воды при остановке котла ;

2.        для удаления воздуха из котла при растопке ;

3.        для удаления конденсата из паропроводов ;

4.        для отбора проб воды и пара ;

5.        для ввода корректирующих (моющих) реагентов при эксплуатации (химической очистке) котла.

 Гидравлическому испытанию подлежат все котлы и их элементы после изготовления. Котлы, изготовление которых заканчивается на месте установки, транспортируемые на место монтажа отдельными деталями, элементами или блоками, подвергаются гидравлическому испытанию на месте монтажа.

 Гидравлическому испытанию с целью проверки плотности и прочности всех элементов котла, а также всех сварных и других соединений подлежат :

1.        все трубные, сварные, литые, фасонные и другие элементы и детали, а также арматура, если они не прошли гидравлическое испытание на местах их изготовления; гидравлическое испытание не является обязательным для перечисленных элементов и деталей, если они подвергаются стопроцентному контролю ультразвуком или иными равноценными неразрушающими методами дефектоскопии ;

2.        элементы котлов в собранном виде ;

3.        котлы, пароперегреватели и экономайзеры после окончания их изготовления или монтажа.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.