Рефераты. Трехфазные электрические цепи, электрические машины, измерения электрической энергии, электрического освещения, выпрямления переменного тока







КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Трехфазной системой переменных токов называется совокупность трех однофазных электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, сдвинутые по фазе на 1/3 периода и создаваемые общим источником электрической энергии. Обмотки фаз генератора имеют одинаковое число витков и выполняются из провода одинакового сечения, поэтому ЭДС, индуктированные в них, равны по величине. Если каждая из трех фаз генератора работает на автономную нагрузку, то такая трехфазная система называется несвязанной, в ней генератор соединен с потребителем шестью проводами (рис.2).



По закону Ома ток, протекающий в фазе



где UФ - напряжение на зажимах фазы

ZФ - полное сопротивление фазы.

Несвязанные системы неэкономичны и практического применения не имеют. Соединение фаз генератора и нагрузки может осуществляться по схемам "звезда" или "треугольник".

Объединяя попарно провода несвязанной шестипроводной системы (рис.2) и соединяя фазы генератора и нагрузки, можно перейти к трехпроводной трехфазной системе, соединенной треугольником (рис.3).



Как видно, соединение треугольником выполняется так, чтобы конец фазы "ав" был соединен с началом фазы "вс", конец фазы "вс" соединен с началом фазы "са", конец фазы "са" соединен с началом фазы "ав". К общим точкам соединения фаз подводятся линейные провода, соединяющие генератор с нагрузкой.

При соединении нагрузки по схеме "треугольник" линейное напряжение равно фазному: Uл = Uф.

Соотношения между фазными и линейными токами устанавливаются на основании первого закона Кирхгофа из уравнений, составленных для узловых точек "а", "в", "с" нагрузки


IА= Iав - Iса

IВ = Iвс - Iав

IС = Iса - Iвс


Таким образом, линейные токи равны алгебраической сумме векторов фазных токов. При симметричной нагрузке фазные токи одинаковы и сдвинуты по фазе на 120°. Векторная диаграмма для данного случая изображена на рис.4


Рис.4


НЕСИММЕТРИЧНАЯ НАГРУЗКА ФАЗ

Если в одну из фаз включить дополнительное сопротивление параллельно имеющемуся, то есть, увеличить количество ламп, то общее сопротивление этой фазы уменьшится, а ток возрастет.

Величины токов в двух других фазах остаются неизменными, так как их сопротивления и напряжения не изменились. Векторная диаграмма, представленная на рис.5, построена для случая увеличения нагрузки в фазе "АВ".

Рис.5                                       Рис.6


При увеличении сопротивления одной из фаз, например, фазы "ВС", до бесконечности, что соответствует обрыву данной фазы, ток в ней равен нулю, в двух других фазах токи не изменятся, так как сопротивления в них остались как и при симметричной нагрузке.

Векторная диаграмма для данного случая изображена на Рис.6.

Лампы, включенные в фазу "ВС", не горят. В двух других фазах накал ламп такой же, каким был при симметричной нагрузке.

В случае обрыва одного из линейных проводов (например, провода, по которым протекает ток Iа), цепь трехфазного тока (рис.7) можно представить в виде однофазной с двумя параллельно включенными ветвями (рис.8)



В этом случае лампы в фазе "ВС" остались под фазным напряжением.

Векторная диаграмма имеет вид рис.9. Эти фазы оказываются соединенными последовательно под напряжение фазы Uвс.

Следовательно, напряжение Uвс делится поровну между фазами "АВ" и "СА". Активная мощность трехфазного тока при несимметричной нагрузке фаз равна сумме активных мощностей отдельных фаз:


Р = Рав + Рвс + Рса,

где: Рав = Uaв Iав cosjав

Pвс = Uвс Iвс cosjвс

Pса = Uса Iса cosjса


При симметричной нагрузке фаз Р = 3Рф = 3UфIфcosj.

А так как при соединении нагрузки треугольником



то есть, Р = Uл Iл cosjф.

Соответственно реактивная мощность Q = Uл Iл sinjф.

Полная мощность S = Uл Iл

Содержание ОТЧЕТА

1. Технические характеристики приборов и элементов, используемых в работе.

2. Схемы и таблицы.

3. Расчетные формулы и векторные диаграммы.

4. Выводы.

КОНТРОЛЬНЫЕ ВОПРОСЫ:

1. Какое соединение фаз генератора или нагрузки называется треугольником?

2. Каковы соотношения между линейными и фазными напряжениями и токами при симметричной нагрузке фаз, соединенных треугольником?

3. Как определяются линейные токи?

4. Как определяется активная, реактивная и полная мощности трехфазной цепи при различных нагрузках?

5. Каковы будут напряжения на фазах приемников энергии, если перегорит предохранитель в одном из линейных проводов?

6. Построить векторные диаграммы для всех случаев симметричной и несимметричной нагрузок фаз.


Литература


3.                 Иванов И.И., Равдоник В.С. Электротехника. - М.: Высшая школа, 1984, с.101 - 104.

4.                 Касаткин А.С., Немцов М.В. Электротехника. - М.: Энергоатомиздат, 1983,с.112 - 114.


Методические указания к лабораторной работе № 8

ИССЛЕДОВАНИЕ ОДНОФАЗНОГО СЧЕТЧИКА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ.

Цель работы: изучить устройство, принцип работы однофазного счетчика, научиться включать его в сеть и производить поверку.

Теоретические сведения

Электрическая энергия равна произведению мощности электрической цепи на время:


где Р - мощность, Вт;

t - время, с.

Единица измерения электрической энергии - Вт×с. На практике применяют более крупную единицу - кВт× ч:

1кВт×ч = 1000 ×3600 = 3600000 Дж (Вт×с).

Для учета электрической энергии в цепях однофазного тока используются электрические счетчики индукционной системы типа СО. Счетчик измеряет энергию, израсходованную потребителем за определенный промежуток времени:



где u - мгновенное значение напряжения питания приемников энергии, В,

i - мгновенное значение тока, протекающий в цепи потребителя, А

p - мгновенное значение мощности потребителя, Вт

t - время, с

Следовательно, электрический счетчик - это суммирующий прибор. Все электрические счетчики по роду измерений величины подразделяются на две группы:

счетчики активной энергии

счетчики реактивной энергии.

Для учета энергии трехфазных потребителей в четырехпроводной сети применяют трех - и четырехэлементные счетчики активной энергии (СА-3, СА-4) и реактивной энергии (СР-3, СР-4). В данной работе исследуется индукционный однофазный счетчик электрической энергии типа СО-2.

УСТРОЙСТВО СЧЕТЧИКА

(см. плакат и счетчик на стенде)

На стальных сердечниках сложной формы, набранных из тонких пластин электротехнической стали, установлены две обмотки (катушки) - токовая обмотка (1) и обмотка напряжения (2).

Токовая обмотка выполнена незначительным числом витков медного провода относительно большого сечения, соответствующего номинальному току счетчика. Она включается в сеть последовательно с нагрузкой.

Обмотка напряжения имеет 8-12 тыс. витков тонкой проволоки диаметром 0,8 или 0,12 мм и включается в сеть параллельно нагрузке.

Между сердечниками установлен алюминиевый диск 3, который укреплен на оси 6 и свободно вращается в подпятниках.

Постоянный магнит 4 необходим для создания тормозного момента. На оси 5 расположена червячная передача 7, которая приводит в движение счетный механизм Все элементы счетчика укреплены на пластмассовом основании и закрываются крышкой. В нижней части основания укреплены клеммы для включения счетчика в сеть.

На лицевой стороне счетчика под стеклом установлен паспорт, в котором указываются основные данные счетчика, например

тип - СО-2

класс точности - 2,5

передаточное число К - 1200 об/ кВт*час (или другое значение, см. счетчик)

напряжение - 220 В

номинальный ток - 5А

частота тока - 50 Гц

ГОСТ

заводской номер

год выпуска.

Принцип работы счетчика

При включении катушки напряжения в сеть по ней течет ток, который вызывает в сердечнике 1 магнитный поток Ф, разделенный на две части: Фр и ФL, где Фр - рабочий поток, который пронизывает алюминиевый диск и замыкается через противополюсную скобу; ФL - магнитный поток, замыкающийся через боковые стержни сердечника и непосредственного участия в создании вращающего момента счетчика не принимающий.

При включении потребителей по токовой катушке течет ток I. Этот ток создает магнитный поток ФI, который пересекает диск в двух местах. Это обеспечивается U - образной формой магнитопровода токовой катушки.

Магнитные потоки Фр и ФI, пронизывая диск, индуктируют в нем вихревые токи.

Взаимодействие переменных магнитных потоков Фр и ФI с индуктированными ими токами создает вращающий момент, действующий на диск 3. Величина этого вращающего момента определяется величиной напряжения, под которым находится катушка 2, величиной тока нагрузки I, протекающего по токовой катушке и коэффициентом мощности cos j цепи, в которую включен счетчик



где k - коэффициент пропорциональности.

Таким образом, вращающий момент, действующий на диск счетчика, пропорционален активной мощности цепи, в которую он включен. Под действием этого вращающего момента диск вращается. Установившаяся скорость вращения диска наступает при равенстве вращающего и тормозного моментов:

МВр = МТ


Тормозной момент создается постоянным магнитом 4. Скорость вращения диска пропорциональна мощности потребителя. С осью диска связан вал счетного механизма. Число оборотов вала счетного механизма зависит от мощности, времени и передаточного числа счетного механизма К. Передаточное число счетчика - это число оборотов его диска, приходящегося на 1 кВт×ч.

К= N/W= N/P*t


Энергия, потребленная из сети за время, в течение которого диск сделал Nt оборотов, будет равна:



где Wt - энергия за время t, Вт×с (кВт×ч)

P - мощность потребителя, Вт (кВт)

t - время, за которое диск сделал n оборотов, с

Nt - число оборотов диска за время t

Методика поверки счетчика

Счетчик будет точно учитывать энергию при соблюдении многих условий, которые строго выполнить практически невозможно.

Для данного счетчика допускаются следующие погрешности в зависимости от величины тока при cos j = 1:


0,1Iн - ±3,5%

0,2Iн - ±2,5%

0,5Iн - ±2,5%

1,5Iн - ±2,5%


Для поверки счетчика необходимо:

Определить номинальную постоянную счетчика


           1   кВт*ч                1000*3600      Вт*с

CН = --- , ------ ;     Cн  = -------------,    ------   

          К    об                          К                  об


Величину К берут из паспортных данных счетчика.

Номинальная постоянная счетчика - это величина, обратная передаточному числу. Она определяет количество энергии в Вт×с, приходящееся на один оборот диска.

2. Определить действительную постоянную счетчика


где U - напряжение сети, В

I - ток потребителя, А

t - время, за которое диск сделает n оборотов

n - количество оборотов диска (принять равным 10).

3. Определить относительную погрешность счетчика



Если действительная постоянная больше номинальной, счетчик дает заниженные показания - недоучитывает энергию; если действительная постоянная меньше номинальной - счетчик дает завышенные показания.

Согласно ГОСТ 6570-70 счетчики электрической энергии выпускаются трех классов точности: 1; 2; 2,5. Цифра, обозначающая класс точности, указывает значение допустимой относительной погрешности счетчика при его номинальной нагрузке.

Определить чувствительность счетчика



где I min - минимальный ток, при котором диск начинает устойчиво вращаться.

По ГОСТ 6570-60 чувствительность не должна быть меньше 0,5 - 1,0% в зависимости от класса точности.

В данной работе чувствительность не определяется.

Порядок выполнения работы

1. Изучить конструкцию счетчика, принцип его работы.

2. Собрать схему согласно рис.1.

3. Включением ламп установить нагрузку, соответствующую 10%, 20%, 50%, 100%, от номинального тока, указанного в паспорте.

21

4. Для каждого значения тока определить по секундомеру время, за которое диск делает 10 оборотов. Все полученные данные напряжения, тока и времени занести в таблицу 1.

5. Вычислить номинальную и действительную постоянные, относительную погрешность для всех режимов работы счетчика.

Сделать выводы о пригодности данного счетчика.

Используя принцип работы однофазного счетчика, проанализировать работу трехфазного счетчика и на основе рис.2 изобразить схему прямого включения в сеть трехфазного счетчика (т.е. исключив трансформаторы тока ТА1... ТА3)


Рис.1 Схема исследования однофазного счетчика активной энергии.


Рис.2. Схема подключения трехфазного счетчика электрической энергии.


Таблица 1

N

п/п


Измерено


Вычислено


U, В

I, А

t, c

n, об

Cн,

Вт× с/об

Cд,

Вт× с/об

d, %

1








2








3








4









Содержание отчета

Схема включения однофазного счетчика в сеть.

Схема включения трехфазного счетчика (п.7).

Таблица с результатами измеренных и вычисленных значений.

3. Выводы о результатах поверки счетчика.

Контрольные вопросы.

1. Единицы измерения электрической энергии.

2. Основные части счетчика и их назначение.

3. Принцип работы индукционного счетчика.

4. Что указывается в паспорте счетчика?

5. Что называется передаточным числом счетчика?

6. Что показывает класс точности счетчика?

7. Что называется номинальной постоянной счетчика? Как она определяется?

8. Что называется действительной постоянной счетчика?

9. Как определить погрешность счетчика?


Литература


1. Касаткин А.С., Немцов М.В. Электротехника. - М.: Энергоатомиздат, 1983,с.277 - 284.

2. Яцкевич В.В. Электротехника. - Мн.: Ураджай, 1981. - 183с.

3. Прищеп Л.Г. Учебник сельского электрика. - М.: Агропромиздат, 1986. - 509с.


Методические указания к лабораторной работе № 9

 

ИССЛЕДОВАНИЕ ОДНОФАЗНОГО ТРАНСФОРМАТОРА

Цель работы:

1. Изучить конструкцию и принцип действия однофазного трансформатора.

2. Исследовать трансформатор в режимах холостого хода, короткого замыкания и при нагрузке.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Ознакомиться с устройством трансформатора, записать его паспортные данные, технические характеристики приборов, используемых в работе.

2. Собрать схему рис.1.

3. После проверки схемы преподавателем включить напряжение и произвести опыт холостого хода.

4. По данным опыта вычислить:

а) коэффициент трансформации n;

б) полную мощность S;

в) коэффициент мощности cosj;

г) угол потерь в стали d.

Результаты измерений и вычислений записать в таблицу 1.

Построить векторную диаграмму режима холостого хода трансформатора.

5. Собрать схему рис.2.

6. После проверки схемы преподавателем включить напряжение и, постепенно увеличивая нагрузку, записать показания приборов в таблицу 2.

7. По результатам измерений п.6 построить внешнюю характеристику трансформатора и определить процентное изменение напряжения DU%.

8. Собрать схему рис.3.

9. После проверки схемы преподавателем включить напряжение и произвести опыт короткого замыкания. Для этого к первичной обмотке трансформатора подвести такое напряжение, при котором в первичной и вторичной обмотках устанавливаются номинальные токи I1Н и I2Н.

10. По данным опыта короткого замыкания вычислить: полное сопротивление Z2, активное сопротивление rК, реактивное сопротивление XК.

Pезультаты измерений и вычислений занести в таблицу 3.

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Трансформатором называется статический электромагнитный аппарат, предназначенный для преобразования напряжения и тока при неизменной частоте.

Процесс преобразования энергии называется трансформацией.

Трансформатор может быть повышающим и понижающим. По числу фаз различают трансформаторы однофазные и трехфазные. Однофазный трансформатор (двухобмоточный) состоит из двух обмоток, намотанных на сердечник, который

набирается из тонких листов электротехнической стали, что уменьшает потери энергии от вихревых токов. Листы изолируются друг от друга лаком или оксидной пленкой.

Обмотка, к которой подается напряжение, называется первичной.

Обмотка, к которой подключается нагрузка, называется вторичной.

Каждый трансформатор имеет щиток, на котором указываются следующие основные номинальные данные:

номинальная мощность SН (кВА);

номинальные напряжения на зажимах первичной и вторичной обмоток U1н и U2н;

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.