Рефераты. Электричество и магнетизм






Магнитные жидкости - это высокоустойчивые коллоидные растворы твердых ферри- и ферромагнетиков в различных немагнитных средах (керосине, воде, толуоле, минеральных и кремнийорганических маслах). Магнитные жидкости обладают уникальным свойством сохранять однородность в течение многих лет  и иметь в жидком состоянии высокие магнитную восприимчивость  и намагниченность насыщения, что позволяет широко использовать их в технике и современных технологиях. Основным средством управления магнитными жидкостями является магнитное поле. При некоторых условиях в магнитной жидкости образуются спонтанно намагниченные микрокапельные агрегаты. Во внешнем магнитном поле микрокапельные агрегаты вытягиваются вдоль вектора напряженности магнитного поля и образуют цепочки. Микрокапельные агрегаты обладают высокой магнитной проницаемостью и низким значением коэффициента межфазного натяжения на границе с менее концентрированной магнитной жидкостью. Возможность управления деформацией микрокапельных агрегатов слабым внешним магнитным полем позволяет широко использовать такие жидкости (магнитная дефектоскопия, магнитография).

1.                 Нанести капельку магнитной жидкости с микрокапельными агрегатами на предметное стекло и накрыть ее покровным стеклом.

2.                 Поместить образец на предметный столик микроскопа.

3.                 Микроскоп с образцом поместить в область однородного магнитного поля катушек Гельмгольца.

4.                 Подать напряжение на катушки от источника постоянного тока.

5.                 Изменяя магнитное поле катушек наблюдать поведение микрокапельных агрегатов.

6.                 Пронаблюдать за поведением агрегатов при повороте образца в магнитном поле.

7.                 Сделать вывод и зарисовать полученную картину.

 

Контрольные вопросы:

 

1.                 Магнитные свойства вещества.. Теория магнетизма.

2.                 Теория ферромагнетизма.

3.                 Замкнутая и открытая доменные структуры.

4.                 Общие представления о магнитных жидкостях.

5.                 Применение магнитных жидкостей.


Литература, рекомендуемая к лабораторной работе:


1.                 Матвеев А.Н. Электричество и магнетизм.- М.: Высшая школа, 1983.

2.                 Савельев И.В. Курс общей физики. Т.2, Т. 3. – М.: Наука, 1977.

3.                 Калашников С.Г. Электричество. – М.: Наука, 1977.

4.                 Телеснин Р.В., Яковлев В.Ф. Курс физики. Электричество.-М.: Просвещение, 1970.

5.                 Сивухин Д.В. Общий курс физики. Т.3. Электричество.- М.: Физматлит МФТИ, 2002.

6.                 Зильберман Г.Е. Электричество и магнетизм. – М.: Наука, 1970.

7.                 Парсел Э. Курс физики Т.2 Электричество и магнетизм – М.: Наука, 1971.

8.                 Буравихин В.А., Шелковников В.Н., Карабанова В.П. Практикум по магнетизму. – М.: Высшая школа, 1979.

9.                 Руководство к лабораторным занятиям по физике. Под редакцией Л.Л. Гольдина, - М.: Наука, 1983.

ЛАБОРАТОРНАЯ РАБОТА №13

ИЗУЧЕНИЕ ЦЕПИ ПЕРЕМЕННОГО ТОКА

Цель работы:

 Ознакомление с одним из методов измерения индуктивности катушки, электроёмкости конденсатора и изучение закона Ома для цепей  переменного тока.

Идея эксперимента

Проверка закона Ома сводится к сравнению сопротивления участ­ка цепи,

содержащего последовательно соединенные катушку индук­тивности и

конденсатор, вычисленного по показаниям амперметра и вольтметра (Zизм=U/I) с рассчитанным по формуле

                                           

где R , L и С - величины, вычисленные при выполнении пре­дыдущих заданий.


Теоретическая часть

Переменный ток

Переменным током называется  ток,  гармонически изменяющийся во  времени

                                                             I=I0sin(ωt+φ),

где  I0 - амплитудное значение  тока, φ - начальная  фаза и ω -циклическая частота. При прохождении переменного тока по провод­нику в нем возникает э.д.с. самоиндукции,  пропорциональная изме­нению силы тока в единицу времени

                                                   

Коэффициент пропорциональности L называется индуктивностью про­водника и зависит от формы  и  размеров  проводника, а также  от магнитных свойств окружающей среды. За единицу  индуктивности в  СИ принимается  I Гн (генри) - это индуктивность  такого проводника, в котором изменение  силы  тока на  I А за 1 секунду  создаёт э.д.с.  самоиндукции в I В. У линейных проводников индуктивность мала. Большой индуктивностью  обладают  катушки   индуктивности, состоящие  из  большого  числа  витков. Сопротивление проволоки, которой намотана катушка, постоянному току  называется  активным (омическим) сопротивлением. При наличии  этого сопротивления в цепи выделяется энергия.

Если к концам проводника с активным  сопротивлением R  при­ложено переменное напряжение, величина которого в каждый  момент времени t определяется уравнением:

U=U0 cos ωt         ,                                              (1)

где Uо - амплитудное значение напряже­ния, то в проводнике возникает переменный электрический ток, сила которого в тот же момент  времени определяется по закону Ома

  (2)

Ток и напряжение в этом случае изменяются синфазно, сдвиг фаз ме­жду ними равен нулю.

Индуктивность и ёмкость в цепи переменного тока

Если на участке цепи имеется катушка индуктивности L , активным сопротивле­нием которой можно пренебречь, то ток

,                                         (3)

где I0=U0/ωL. Роль сопротивления в этом случае играет вели­чина XL=ωL, которую называют индуктивным сопротивлением. Ток через индуктивность отстаёт по фазе от приложенного напряжения на  π/2.

Если участок цепи состоит из соеди­нённых последовательно активного сопро­тивления R и индуктивности L , то ток

 ,                          (4)

где                                   (5)

φ-сдвиг фаз между током и напряжением, и tg φ= ωL/R. .Величина

                                                (6)

носит название полного сопротивления, так как она играет в формуле (5) ту же роль, что и активное сопротивление в законе Ома.

Если участок цепи состоит из конден­сатора, ёмкость которого С, то ток

 ,               (7)

где                                             (8)

Величина                                                            XC=1/ωc              (9)

называется ёмкостным сопротивлением. Как видно из (7), ток через ёмкость опережает напряжение на π/2 .

Закон Ома для переменного тока

В случае, когда в цепь включены пос­ледовательно активное сопротивление R, индуктивность L и ёмкость С,  ток 

,

где                                                                                                                                             (10)

                                          (11)

Величина                                                            (12)

является полным сопротивлением цепи. Выражение (10) носит наз­вание закона Ома для цепи переменного тока.

Во всех вышеприведённых формулах I0 и U0 - амплитудные значения тока и напряжения. Приборы, используемые в цепях пере­менного тока, обычно измеряют действующие или эффективные значе­ния тока и напряжения, которые связаны с их амплитудными зна­чениями соотношениями:   

.

Очевидно, что все вышеприведённые формулы оказываются справед­ливыми и для эффективных значений тока и напряжения.

Экспериментальная часть

Измерение индуктивности катушки          

Так как всякая реальная катушка в цепи переменного тока об­ладает активным сопротивлением R и индуктивным сопротивлением XL, то полное сопротивление катушки определяется формулой  (6) , откуда

,                                                       (13)

где  ω=2πν  (для переменного тока в сети ν = 50 Гц).

1.  Измерить активное сопротивление катушки R с помощью ом­метра или моста постоянного тока.

2.  Для измерения полного сопротивления Z катушки собрать цепь по схеме (рис. I), подключив её к выходным клеммам переменного напряжения источника тока В-24.

Ползунок реостата установить на мак­симум сопротивления, включить источ­ник тока, подавая 10-15 В. Измерить три  значения тока I и напряжения U при различных положениях движка реостата. По фор­муле  Z=U/I определить три соответствующих значения Z и найти сред­нее значение <Z> .

3.  По формуле (13) вычислить  индуктивность L  катушки, под­ставляя в неё значения R  и <Z>.

4.  Результаты измерений и вычислений занести в таблицу:


R, Ом

U, В

I, A

Z, Ом

<Z>,Ом

L, Гн









Измерение ёмкости конденсатора

1.                 Собрать цепь по схеме   (рис. 2).

2.                 Установить реостат на максимум сопротивления, подать пере­менное напряжение порядка 15 В. Из­меняя сопротивление реостата, изме­рить  силу  тока I и напряжение U для трёх различных положений движка реостата. По формуле ХC = U/I определить  ёмкостное сопротивление три раза и найти  среднее  значение <Хс>. Затем по формуле  C=1/ωXc вычис­лить ёмкость конденсатора.

3.                 Результаты измерений и вычислений занести в таблицу:


U, B

I, A

Xc, Ом

<XC>, Ом

С, Ф








Проверка закона Ома для цепи переменного тока

1.  Приборы соединить по схеме (рис.3), подать переменное нап­ряжение порядка 15 В.

2.  Измерить три значения тока I и напряжения U при разных положениях движка реостата и вычислить для каждого случая сопротивление Zизм = U/I, найти среднее значение <Zизм>.

3.  Вычислить по формуле (12) значение Zвыч , подставляя полу­ченные ранее значения R , L и С.

4.  Сравнить результаты и вычислить относительную погрешность   

.

5.  Результаты измерений и вычислений занести в таблицу:


U, B

I, A

Zизм, Ом

<Zизм>, Ом

Zвыч, Ом

δ









Контрольные вопросы

 

1.                 Что называется переменным током?

2.                 В чем заключается явление самоиндукции?

3.                 Что называется индуктивностью, от чего она зависит, единицы ее измерения.

4.                 Каков сдвиг фаз между током и напряжением, если в цепи есть только активное сопротивление; покажите это с помощью векторной диаграммы.

5.                 Каков сдвиг фаз между током и напряжением, если в цепи есть только индуктивность или емкость; покажите это с помощью векторной диаграммы.

6.                 Как объяснить зависимость индуктивного и емкостного сопротивления от частоты переменного тока?

7.                 Как объяснить прохождение тока через конденсатор?

8.                 Ввести понятия эффективного значения тока и напряжения.

9.                 Вывести формулу закона Ома с помощью векторной диаграммы.

 

Литература, рекомендуемая к лабораторной работе:

 

22.            Матвеев А.Н. Электричество и магнетизм.- М.: Высшая школа, 1983.

23.            Калашников С.Г. Электричество. – М.: Наука, 1977.

24.            Савельев И.В. Курс общей физики. Т.2, Т. 3. – М.: Наука, 1977.

25.            Телеснин Р.В., Яковлев В.Ф. Курс физики. Электричество.-М.: Просвещение, 1970.

26.            Сивухин Д.В. Общий курс физики. Т.3. Электричество.- М.: Физматлит МФТИ, 2002.

27.            Иродов И.Е. Электромагнетизм. Основные законы. –М.- С.-П.: Физматлит Невский диалект, 2001

28.            Зильберман Г.Е. Электричество и магнетизм. – М.: Наука, 1970.

29.            Парсел Э. Курс физики Т.2 Электричество и магнетизм – М.: Наука, 1971.

30.            Физический пракимкум. Электричество. Под редакцией В.И. Ивероновой. – М.: Наука, 1968.

31.            Кортнев А.В., Рублев Ю.В., Куценко А.Н.. Практикум по физике. – М.: Высшая школа, 1965.

32.            Руководство к лабораторным занятиям по физике. Под редакцией Л.Л. Гольдина, - М.: Наука, 1983.

ЛАБОРАТОРНАЯ РАБОТА № 15

ИЗУЧЕНИЕ  ЗАТУХАЮЩИХ  КОЛЕБАНИЙ

Цель работы:

Получить и наблюдать с помощью осциллографа за­тухающие электромагнитные колебания, определить  логарифмический декремент затухания и его зависимость от параметров  колебатель­ного контура.

Идея эксперимента

Для возбуждения  колебаний  в  контуре используется метод электрического удара: в цепь колебательного контура на конденса­тор подаётся короткий электрический импульс, он заряжает конден­сатор, и в цепи возникают затухающие колебания. В качестве источ­ника электрических импульсов используется пилообразное напряже­ние генератора развёртки осциллографа. Для получения на экране осциллографа кривой  U(t), можно воспользоваться схемой на рис. 1.  На пластины осциллографа подается сигнал U пропорциональный току в контуре. Реле К 1-2 попеременно подключает конденсатор то к источнику импульсов, то к колебательному контуру, поэтому на экране осциллографа видна устойчивая картина (рис. 2). При этом условие  синхронизации двух процессов - развёртки и затухающего колебания - выполняется автоматически, так как час­тота следования импульсов связана с частотой развёртки.

Теоретическая часть


Реальный колебательный  контур

Замкнутая цепь, состоящая из катушки индуктивности и ёмкости, образует  колебательный  контур. Реальный  колебательный  контур обладает сопротивлением. Колебания в контуре можно вызвать, сообщив обкладкам конденсатора некоторый  начальный  заряд, либо возбудив в индуктивности ток, например, путём выключения внешне­го магнитного поля, пронизывающего витки катушки.

Рассмотрим цепь, изображённую на рис.1. Если  зарядить кон­денсатор от источника тока ε  (ключ К  в положении  I), а за­тем замкнуть  конденсатор на

2

 

1

 
индуктивность (т.е. перебросить ключ   в положение 2), то конденсатор начнёт разряжаться, по цепи  пой­дёт убывающий  ток. В  результате  энергия 

 электрического  поля будет убывать, но зато  возникает  всё возрастающая энергия маг­нитного поля, обусловленного током, текущим через индуктивность. В катушке возникает э.д.с. самоиндукции, направленная так, чтобы поддержать ток. Поэтому в момент, когда  напряжение на конденса­торе обратится в нуль, ток достигнет наибольшего значения.

Далее ток  течёт за счёт э.д.с.  самоиндукции и перезаряжает конденсатор, но уже до меньшего  напряжения, так как часть энер­гии выделяется в виде джоулева тепла на сопротивлении R  Затем те же процессы протекают в обратном направлении, после чего сис­тема приходит в исходное состояние.

Таким образом, в колебательном контуре периодически изменяют­ся (колеблются)  заряд  на обкладках конденсатора, напряжение на конденсаторе и сила тока, текущего через  индуктивность. Колеба­ния сопровождаются взаимными превращениями энергии электрическо­го и магнитного полей.

На основании закона Ома

.                                          ,                                          (1)

где   U - напряжение на конденсаторе,  εi - э.д.с. самоиндукции.

 ;      ,                              (2)

так как  q=UC. Знак "минус" указывает, что положительным считается то направление тока, которое соответствует убыли заря­да на конденсаторе. Из формул (2) находим:

 .                                                   (3)

Из соотношений (I), (2) и (3) получается дифференциальное урав­нение затухающих колебаний:

.                                           (4)

Введём обозначения: ω0 = (1/LC)1/2 - циклическая частота соб­ственных колебаний контура без  затухания, β= R/2L коэффициент затухания. Тогда уравнение (4) можно записать в виде:

.                                 (5)

Решением этого уравнения будет выражение:

                              (б)

где                                                                                          (7)

циклическая частота свободных колебаний контура. Из уравнения (6) следует, что напряжение на конденсаторе со временем изменяется по гармоническому закону. Амплитуда колебаний убывает со временем по экспоненциальному закону. Вид затухающих колебаний представлен на рис. 2. Период колебаний выражается формулой:

.                                             (8)

Если R достаточно мало по сравнению с L , то членом R2/4L2  можно пренебречь, и (8) переходит в формулу Томсона:

.                                                        (9)

Для характеристики затухания колебаний служит логарифмический декремент затухания – натуральный логарифм отношения двух амплитуд, отстоящих друг от друга по времени на один период.

,                                                    (10)


.                  (11)

При сопротивлении  , когда выражение (8) обращается в бесконечность, колебания в контуре не возникают, а процесс будет называться апериодическим.


Экспериментальная установка

Схема экспериментальной установки изображена на рис. 3. Емкость С,

индуктивность L и сопротивление R образуют колебательный контур. Колебания в контуре наблюдаются с помощью осциллографа. Для возбуждения колебаний служит генератор импульсов, присоединенный к контуру через конденсатор C1.

Конденсатор контура получает некоторый начальный заряд. В промежутках между импульсами в контуре совершаются свободные колебания, описываемые уравнением (5). Затухание колебаний определяется потерями  энергии в катушке индуктивности L и сопротивлении R

Проведение эксперимента.

Изучение зависимости логарифмического декремента затухания от ёмкости

1.                 Собрать цепь по схеме (рис. 3), включив конденсатор электро­ёмкостью  С= 13600 пФ.

2.                 Установить на магазине индуктивностей  L  = 100мГн  и  на магазине сопротивлений  R = 200 Ом.

3.                 После проверки цепи включить осциллограф в сеть, добиться, чтобы на экране осциллографа было устойчивое  изображение одного цуга затухающих колебаний.

4.                 Измерить несколько амплитуд затухающих  колебаний, отстоя­щих на один период друг от друга.

5.                 Найти отношения A1/A2, А2/А3, А3/А4, вычислить среднее зна­чение этих  отношений и найти среднее значение логарифмического декремента затухания для данного контура по формуле (10).

6.                 Выразить логарифмический декремент затухания (11) через па­раметры R , L , С  и вычислить его. Сравнить полученный резу­льтат с экспериментальным.

7.                 Заменить в схеме конденсатор на С = 6800 пФ  и  повторить все измерения и вычисления.

8.                 Сравнить значения δ  при разных  С  и сделать вывод.

Изучение зависимости логарифмического декремента затухания от индуктивности

1. Включить конденсатор  С = 13600 пФ, магазин индуктивностей на 100 мГн, магазин сопротивлений на 200 Ом.

2. Произвести все измерения и вычисления, обозначенные в пун­ктах 3-6 предыдущего задания.

3. Включить магазин индуктивностей на  50 мГн, повторить все измерения и вычисления.

4. Сравнить  логарифмические декременты при разных L, сделать вывод.

Изучение зависимости логарифмического декремента затухания от сопротивления контура

1.                 Включить конденсатор С= 13600 пФ, магазин индуктивности на 100 мГн.

2.                 Меняя сопротивление контура через каждые  100 Ом, получить затухающие колебания,  измерить  амплитуды  колебаний, вычислить для каждого случая логарифмические коэффициенты затухания.

3.                 Резу­льтаты измерений и вычислений занести в таблицу 1:

4.                 Пользуясь магазином сопротивлений, найти критическое  со­противление, при котором наступает апериодический процесс. Сра­внить найденное значение с рассчитанным по формуле .

5.                 Построить график  зависимости  логарифмического декремента затухания от сопротивления контура.


Таблица 1

R, Ом

С, пФ

L, мГн

А1       

А 2  

А3      

А4

An/An+1 

δ   

δт      

Δδ

1

  200

13600

100









2

200

  6800

100









3

200

13600

    50









4

100

13600

100









5

300

13600

100









6

400

13600

100









7

500

13600

100









 

Контрольные вопросы:

 

1.                 Идеальный колебательный контур и процессы электромагнитных колебаний в нем, вывод формулы периода собственных колебаний.

2.                 Реальный колебательный контур и процессы, происходящие в нем, контур  с сосредоточенными параметрами

3.                 Записать дифференциальные уравнения затухающих колебаний и его решения.

4.                 Причины затухания колебаний – динамический и энергетический подходы.

5.                 Логарифмический декремент затухания, его физический смысл, зависимость от параметров колебательного контура.

6.                 Получить формулу периода затухающих колебаний, дать понятия апериодического разряда, каковы условия его возникновения.

7.                 Покажите, исходя из формул электрической и магнитной энергии, что закон сохранения энергии соблюдается.

8.                 Идея эксперимента. Как получить на экране осциллографа устойчивую осциллограмму затухающих колебаний.

 

Литература, рекомендуемая к лабораторной работе:

 

1.                 Матвеев А.Н. Электричество и магнетизм.- М.: Высшая школа, 1983.

2.                 Калашников С.Г. Электричество. – М.: Наука, 1977.

3.                 Савельев И.В. Курс общей физики. Т.2, Т. 3. – М.: Наука, 1977.

4.                 Телеснин Р.В., Яковлев В.Ф. Курс физики. Электричество.-М.: Просвещение, 1970.

5.                 Сивухин Д.В. Общий курс физики. Т.3. Электричество.- М.: Физматлит МФТИ, 2002.

6.                 Иродов И.Е. Электромагнетизм. Основные законы. –М.- С.-П.: Физматлит Невский диалект, 2001

7.                 Зильберман Г.Е. Электричество и магнетизм. – М.: Наука, 1970.

8.                 Парсел Э. Курс физики Т.2 Электричество и магнетизм – М.: Наука, 1971.

9.                 Руководство к лабораторным занятиям по физике. Под редакцией Л.Л. Гольдина, - М.: Наука, 1983.


Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.