Рефераты. Великие учёные-физики






В Англии Резерфорд попадает на работу в знаменитую Кавендишскую лабораторию. Эта лаборатория известна физикам всего мира. В ней были сделаны выдающиеся научные исследования знаменитыми физиками Максвеллом и Релеем. Когда Резерфорд приехал в Англию, лабораторией заведовал знаменитый физик Джозеф Томсон. Он очень хорошо принял молодого человека. В эту же лабораторию прибыл и французский физик Поль Ланжевен. Долгое время молодые люди работали вместе, они стали закадычными друзьями.

Томсон умело руководил молодыми физиками, и за три года работы в Кембридже Резерфорд сложился как ученый и стал известен в мире науки. Здесь он начал работать над проблемами радиоактивности. Как и всякий ученый, Резерфорд опирался на исследования, выполненные до него. Он говорил: «Люди науки должны ставить себя в зависимость не от идей отдельного человека, а от мудрости тысяч людей, думавших над той же проблемой, и каждый должен добавлять свою долю в большое здание науки».

В годы работы Резерфорда в Кавендишской лаборатории в мире науки произошли удивительнейшие открытия. Томсон приходил к мысли о существование электрона и охотится за этим неуловимым волшебником в своей лаборатории. В немецком городе Вюрцбурге профессор Вильгельм Рентген открывает невидимые лучи, проходящие через предметы, «непрозрачные» для обычных лучей. Профессор Парижской политехнической школы Анри Беккерель открывает невидимые лучи, испускаемые ураном. Найденное явление было названо радиоактивностью.

Томсон поручает Резерфорду исследовать электрический разряд в газах, надеясь в этом явлении обнаружить электрон. Молодой физик старательно выполняет работу и открывает наличие в газах тока насыщения. Но Резерфорда увлекают новые лучи. Он интуитивно чувствует, что в этих лучах заложены доказательства правильности идей, которые интересовали его в студенческие годы. Он проводит экспериментальную работу по сравнению лучей Рентгена с лучами Беккереля и устанавливает, что лучи Беккереля отличаются от лучей Рентгена. Последние, обладают всеми физическими свойствами видимых лучей, но не воздействуют на зрение. Лучи же Беккереля резко отличаются по своим свойствам от видимых лучей. Резерфорд производит известный, ставший классическим опыт: он пропускает лучи Беккереля через мощное магнитное поле и обнаруживает, что они состоят из двух видов излучений. Он дает им названия: альфа-излучение и бета-излучение.

Возникает вопрос: почему уран излучает? У Резерфорда готов ответ: атом урана сложен и распадается. Но Резерфорд теперь уже не студент, а 26-летний ученый, работник всемирно известного научного учреждения. Он умеет сдерживать свои порывы; гипотеза о распаде атома урана требует подтверждения. Он горит желанием включиться в работу, но неожиданно получает приглашение занять должность профессора физики университета в далеком канадском городе Монреале.

У Резерфорда не было выбора. Его «премия» оканчивалась, и нужно было искать средства для существования. И Резерфорд едет в Монреаль. Здесь он работает 10 лет. Вся его последующая жизнь - это непрерывная научная работа. В течение первых 2-3 лет он налаживал физическую лабораторию и сделал ее одной из лучших в мире. В ней Резерфорд находился большую часть суток и произвел тысячи опытов. Идея Резерфорда о сложном составе атомов получала свое подтверждение. И он начинает поиски самых неопровержимых доказательств этой идеи. Последовательно проведя огромное количество экспериментов, ученый раскрывает все тайны альфа- и бета- лучей и постепенно выводит следующие закономерности:

1.  Альфа - лучи имеют положительный, а бета - лучи - отрицательный электрический заряд.

2.   Альфа - лучи поглощаются всеми веществами сильнее, чем бета - лучи.

3.   Кроме урана, радия и тория, радиоактивны также эманация радия и эманация тория.

4.   Альфа-   лучи   не   являются   электромагнитными   волнами.   Это   особые физические частицы - альфа- частицы.

5.   Альфа- частицы представляют собой не что иное, как атомы гелия.

6.   Так как атомы гелия происходят от атомов урана, радия и тория, то атомы этих веществ являются сложными образованиями. Они распадаются на альфа- частицы, бета- частицы и атомный остаток.

7.   Выбросив атом гелия, атом урана должен стать каким-то другим атомом; следовательно, при естественной радиоактивности происходит превращение одного элемента в другой.

Каждый из этих выводов Резерфорд в своих статьях подтверждает многочисленными опытами.

В Монреале Резерфорд совместно с английским ученым Содди разработал теорию радиоактивного распада и установил законы этого распада, вошедшие в учебники физики. На основании изучения теории и практики радиоактивного распада Резерфорд пришел к выводу, что при распаде выделяется колоссальное количество атомной энергии. Вот как об этом пишет его товарищ по работе Содди: «Первичный источник энергии нужно искать в атомах - главном источнике деятельности вселенной. Главный интерес нового явления заключается в произвольном и постоянном излучение энергии... Внутри атома - большие запасы энергии, теряя которые, атомы превращаются». Этот вывод, всю важность которого человечество смогло оценить только после взрыва атомных бомб, был сделан Резерфордом в 1908 г.

Монреальские работы принесли ученому мировую известность. Его избрали почетным членом Лондонского королевского общества и наградили медалью Румфорда. Резерфорда приглашают работать в Манчестерский университет. Он дает согласие и в 1907 г. переезжает в Англию с женой и шестилетней дочерью.

В Манчестере Резерфорд работал 12 лет. В декабре 1908 г. ученый совершил поездку в Стокгольм за получением присужденной ему Нобелевской премии. По пути пароход остановился в Копенгагене, где датские студенты и преподаватели устроили ученому восторженную встречу. Нобелевская премия была присуждена Резерфорду за работы по химии, так как в то время работы по радиоактивности относились не к физике, а к химии. Ученый был в очень хорошем настроении и на банкете по случаю получения премии сказал: «Я имел дело со многими разнообразными превращениями, которые изучал в разные годы жизни, но самое замечательное превращение заключалось в том, что я в один миг превратился из физика в химика».

Из путешествия Резерфорд возвратился полный сил и энергии. Он разрабатывает установку, при помощи которой доказывает еще раз, что альфа- частицы являются атомами гелия. В 1910 г. он совместно с Гейгером изобрел счетчик альфа - и бета-частиц - прибор для обнаружения радиоактивности.

В 1910 г. Резерфорд вместе со своим учеником Марсденом начинает изучать взаимодействие альфа- частиц с веществом. В это время английский физик Джозеф Томсон уже создал свою теорию строения атома: он считал, что атом представляет собой положительно заряженный шарик, внутри которого находятся вкрапленные в него электроны. Количество электронов, по Томсону, в атоме таково, что их отрицательный заряд целиком компенсирует положительный заряд шарика, и поэтому атом в целом электрически нейтрален. Поэтому, рассуждал Резерфорд, атом должен безразлично относиться к положительно заряженной альфа- частице, и она без всяких задержек будет свободно проходить через тонкие металлические пленки. Резерфорд был твердо уверен в этом и даже сказал Марсдену: «Я не ожидаю ничего любопытного от ваших опытов, но все же понаблюдайте».

Марсден проделал несколько десятков экспериментов и обнаружил нечто в высшей степени интересное: не все альфа- частицы проходят сквозь пластинки, среди них попадаются и такие, которые отскакивают от пластинок, рассеиваются.

Ученик доложил об этом учителю. Резерфорд впоследствии так говорил о своем впечатлении от сообщения Марсдена: «Это был совершенно невероятный случай в моей жизни. Это было почти неправдоподобно, как если бы выстрелили 15-фунтовым снарядом в кусок папиросной бумаги и он вернулся бы обратно и поразил вас».

Из опытов, таким образом, следовало, что в каждом атоме пластинки должна быть массивная часть, имеющая положительный заряд,  который и отталкивает альфа-частицу. А электроны атома должны находиться вне этой массивной части атома.

Из всего этого нельзя было не сделать вывод о том, что модель атома Томсона неверна!

Но как же все-таки построен атом?

И Резерфорд начинает воскрешать свои юношеские мечтания - должна существовать какая-то закономерность в строении атомов различных элементов. В природе происходит не только эволюция растений и животных, но и эволюция атомов.

Эти раздумья и поиски атомной структуры через несколько месяцев привели ученого к созданию ядерной теории атома.

Профессор Кембриджского университета известный физик Артур Эддингтон дал такую оценку открытию: «Создав эту модель, Резерфорд произвел величайшую перемену в нашем взгляде на материю со времен Демокрита».

Идея о неразрушаемом и неизменном атоме навсегда исчезла из физики. Было положено начало современной физике атома.

В 1913 г. Резерфорд начинает работу над проблемой, которая непосредственно вытекала из его предыдущих исследований. Он руководствуется следующей мыслью: нельзя ли разогнать альфа- частицы, чтобы они столкнулись с ядром атома и разбили его, как снаряд разбивает кирпичную стену? В результате изменится ядро атома, получится новый элемент, произойдет искусственное превращение элементов. Прославленный физик проводит свои удивительные опыты по изучению столкновений альфа- частиц с ядрами атомов. Но начинается первая мировая война. Ученики Резерфорда идут в армию, на фронте погибает один из них - Генри Мозли. Объем научных работ сокращается, а ученого призывают в военную промышленность, где он занимается вопросами строительства подводных лодок.

В 1919 г. Резерфорда приглашают на работу в качестве директора той самой Кавендишской лаборатории, в которой он начинал свою научную деятельность. Он переезжает в Кембридж, где и живет до самой смерти.

В этой лаборатории ученый возвращается к реализации своей идеи, и вскоре весь научный мир поразила сенсация: альфа- частица попала в ядро азота, и от этого в конечном итоге получился кислород. Впервые на земле было произведено искусственное превращение одного элемента в другой. Опыты Резерфорда стали повторять во многих лабораториях мира. Зародилась новая ветвь физики и техники - искусственное получение радиоактивных элементов. В наше время мы пожинаем плоды открытия Резерфорда в виде многочисленных искусственных радиоизотопов.

В последующие годы замечательный ученый открыл 17 ядерных реакций. В 1920 г. он предсказал существование нейтрона, и с этого времени начала создаваться современная теория атомного ядра. Слава Резерфорда гремит по всему миру. В 1922 г. его избирают почетным членом Академии наук СССР. В 1925 - 1930 гг. он исполняет обязанности президента Лондонского королевского общества. В 1932 г. его возводят в сан лорда и называют лордом Нельсоном. Но звание лорда так и не пристало к Резерфорду - сыну фермера - и осталось только выражением почета, оказанного ему.

Всю свою жизнь Резерфорд был здоровым, жизнерадостным человеком. Он умел работать, но ему принадлежит такой афоризм: «Плохи те люди, которые слишком много работают и слишком мало думают». Резерфорд говорил, что плодотворные мысли к нему приходят на охоте, на рыбной ловле, во время игр.

Никто не предполагал, что этот человек может так скоро умереть. Однако осенью 1937 г. у него случилось ущемление грыжи, и на четвертый день после операции он скончался.

Могила Резерфорда находится в Вестминстерском аббатстве, где похоронены выдающиеся люди Англии. Она расположена рядом с останками Ньютона, Фарадея и Дарвина.

Нильс Хенрик Давид Бор (1885-1962)

Один из величайших физиков нашего времени, имя которого стало почти легендарным. Он был человеком, чьи идеи наряду с идеями Эйнштейна являлись руководящими для физиков в течение доброй половины столетия.

Нильс Бор родился в 1885 году в Копенгагене, в семье профессора физиологии. Детство и юность его прошли в родном городе. Будучи 20-летним юношей, он направил в Датское королевское научное общество свою первую работу, которая получила золотую медаль. Содержанием работы явилось исследование колебаний поверхности струи жидкости и определение поверхностного натяжения воды. Однако идеи этой первой работы не выходят за рамки классической физики.

В   1911   году   Бор   окончил  университет,   защитил   диссертацию и уехал в Кавендишскую лабораторию, где собирался под руководством Джозефа Томсона работать над электронной теорией. Однако это сотрудничество длилось недолго. Передовые идеи Бора не находили отклика у приверженца классики Томсона. Они очень часто спорили. Бор мыслил глубже, его неудержимо влекли к себе идеи новой физики. Споры между Томсоном и молодым, строптивым датчанином, очевидно, серьезно повлияли на их отношения, и, хотя Бор всегда считал английского ученого гениальным человеком, он уехал из Кембриджа в Манчестер к беспокойному, ищущему Резерфорду. Последний с группой сотрудников занимался тогда исследованием атомного ядра. Бор проникся большой симпатией к Резерфорду, он восхищался им как ученым и человеком. Начались совместные беседы, споры, искания. И вот в 1913 году Бор нашел остроумное решение вопроса на основе открытия, сделанного Планком.

Датский ученый утверждал, что электрон в устойчивом атоме может двигаться вокруг ядра по определенной "дозволенной" орбите. В этом состоянии он пребывает спокойно и не излучает энергии. Если же электрон перескакивает с одной определенной орбиты на другую, лежащую ближе к ядру, то он излучает энергию, причем это излучение идет не непрерывно, а порциями - квантами. Если же электрон поглощает квант энергии, то он переходит на более далекую от ядра орбиту.

Эти идеи и составляют существо так называемых "постулатов Бора". Все очень просто с точки зрения сегодняшнего состояния физики. А между тем нужно было быть очень смелым человеком, чтобы высказывать эту идею у колыбели атомной физики! Так возникла боровская модель атома и новая электромагнитная теория материи. Эти работы имели, как показало дальнейшее развитие науки, много уязвимых мест, свои противоречия, которые позднее устранялись самим Бором. Но исследования, проделанные им в 1913 году, решали ряд труднейших проблем. Ученым это казалось поразительным. Дело в том, что постулаты Бора не вытекали из прежних представлений о строении атома. Они противоречили всем принципам физики XIX века.

После завершения первых работ Бор в течение года жил в Копенгагене и читал лекции в университете. В 1914 году он снова уехал на 2 года в Манчестер, где продолжал работу над теорией атома. В 1916 году Бор окончательно поселился в Копенгагене и стал профессором теоретической физики в университете. В Копенгагене по его инициативе создается Институт теоретической физики, руководителем которого он был до последних дней своей жизни.

Идеи Бора быстро разнеслись по всему миру, а его выступления за пределами Дании собирали слушателей из разных стран.

В 1922 году за работы по квантовой теории строения атома и его излучения Бор получил Нобелевскую премию. Ему было тогда 37 лет. Развитие квантовой физики с 1913 по 1925 год шло в основном по пути развития теории Бора, которая дала возможность объяснить много удивительных явлений: закономерности в линейчатых спектрах, расщепление спектральных линий, размеры атома, комбинационный принцип в спектроскопии.

С 1924 года начала создаваться квантовая механика, иначе говоря, механика движения микрочастиц: электронов, позитронов, протонов и других так называемых "элементарных частиц". Трудами Шредингера, Гейзенберга, Де Бройля, Дирака стал создаваться математический аппарат этой новой механики, учитывающей волновые, атомистические и корпускулярные свойства микрочастиц. Естественно, что  возникновению квантовой механики предшествовало огромное накопление экспериментальных фактов. Все это нужно было осмыслить, синтезировать. В 1926 году Бор пригласил Шредингера приехать в Копенгаген и прочесть несколько лекций по волновой механике. С его приездом между ними начались споры по основам квантовой теории, в которых Шредингер защищал идеи волновой механики, а Бор утверждал, что в ней ничего нельзя понять без квантовых скачков, Однажды Шредингер, доведенный до отчаяния аргументами Бора, воскликнул: «Если мы собираемся сохранить эти проклятые квантовые скачки, то, я жалею, что вообще имел дело с квантовой теорией».

Бор возразил: «зато остальные благодарны Вам за это, ведь Вы так много сделали для выяснения смысла квантовой теории».

Итак, уравнения новой механики были написаны, но многое осталось неясным. Нужно было понять, например, что значат координаты электрона. Ведь последний обнаружил не только корпускулярные, но и волновые свойства, а если это так, то у него нет определенных координат. Иначе говоря, нужно было установить связь между символами, входящими в уравнения, и реальным физическим миром. Наконец в 1927 году Бор сумел синтезировать идеи волновой теории. В результате усилиями Бора и Гейзенберга был сформулирован принцип дополнительности, которым ученый подчеркивал, что все особенности микромира и поведение микрочастиц нельзя понимать в отрыве от микромира, от прибора, который измеряет координату или какую-либо другую характеристику частицы. Таким образом, здесь имеет место взаимодействие объекта изучения - микрочастицы с макро объектом - прибором. Теория идеи и труды двух великих ученых сыграли решающую роль не только в физике, но и в формировании взглядов.

Эти работы Бора стали предметом жарких дискуссий между учеными по поводу коренных философских вопросов современного естествознания.

В 1927 году состоялся V Сольвеевский конгресс, на котором идеи Бора подверглись серьезной критике со стороны Эйнштейна. И Бор, и Эйнштейн очень остроумно и глубоко защищали свою точку зрения. Их полемика вылилась в многолетнюю дискуссию, в ходе которой создатель теории относительности выдвигал все новые и новые возражения. Бор очень любил Эйнштейна и подчеркивал, что его критика способствовала развитию глубокого и всестороннего понимания квантовой механики; парадоксы, выдвигаемые Эйнштейном, помогали развивать теорию. Идеи и труды двух великих ученых сыграли решающую роль не только в физике, но и в формировании современного научного мировоззрения, так как теория квантов и теория относительности отражают общие закономерности научного познания.

С 30-х годов научные интересы датского ученого сосредоточились вокруг проблемы атомного ядра. В это время новые экспериментальные данные вступили в противоречие с картиной, созданной теоретиками. На помощь им пришел Бор. Он без всякого математического аппарата показал, как нужно понимать вопрос взаимодействия нейтронов с ядром, и предложил модель ядра, напоминающую каплю жидкости с деформируемой поверхностью, а затем создал теорию деления ядер урана, на основании которой строились все практические применения этого явления. После этого физика ядра стала развиваться по совершенно новому накоплению. Одновременно Бор продолжал работу по уточнению физической сущности квантовой механики.

Бор никогда не считал свои идеи и теории законченными и, как он сам говорил, никогда  не  позволял  себе  и своим  сотрудникам увлекаться «определенными»  и «окончательными» формулировками. Он поддерживал всякую новую разумную идею, какой бы необычайной внешне она ни была, понимая, что всегда за новым открытием неизменно должно следовать другое, еще более приближающееся к истине.

Необычайно общительный человек, Бор не уклонялся от дискуссий, наоборот, они приносили ему огромное удовлетворение. Он никогда не оскорблялся, если его идеи подвергались суровой критике.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.