Рефераты. Широкополосный усилитель






Проводимость базы вычисляем по формуле

                                                                                    (4.16)

где Ск - ёмкость коллекторного перехода;

- постоянная времени цепи обратной связи. (паспортные данные, в

дальнейшем - *)


В справочной литературе значения  и  часто приводятся измеренными при различных значениях напряжения коллектор-эмиттер . Поэтому при расчетах  значение  следует пересчитать по формуле

                                                        (4.17,а)

где       - напряжение , при котором производилось измерение ;

 - напряжение , при котором производилось измерение .


Также следует пересчитать ёмкость коллекторного перехода для напряжения коллектор-эмиттер, равному напряжению в рабочей точке:


                                                 (4.17,б)


Сопротивление эмиттерного перехода рассчитывается по формуле


                                                       (4.18)


где Iко - ток в рабочей точке в миллиамперах;

а=3 – для планарных кремниевых транзисторов,

а=4 – для остальных транзисторов.


Проводимость перехода база-эмиттер рассчитывается по формуле

                                                                               (4.19)

где - сопротивление эмиттерного перехода;

- статический коэффициент передачи тока в схеме с ОЭ (*).


Ёмкость эмиттера рассчитывается по формуле

                                                                 (4.20)

где fт – граничная частота коэффициента усиления тока базы (*).


Крутизна внутреннего источника рассчитывается по формуле

                                                                                        (4.21)

где - статический коэффициент передачи тока в схеме с ОБ.


                                                                                    (4.22)


Проводимости gБК и gi оказываются много меньше проводимости нагрузки усилительных каскадов, в расчётах они обычно не учитываются.


Подставляя численные значения, по формулам (4.16) ¸ (4.22) проводим расчёт элементов схемы.

По формулам (4.17а) и (4.17б) пересчитаем ёмкость коллектора для напряжения, при котором измерена постоянная времени цепи обратной связи, а также для напряжения, равного напряжению в рабочей точке:     


По формуле (4.16) производим расчет проводимости базы:


По формуле (4.18) производим расчет сопротивления эмиттерного перехода:


Проводимость база-эмиттер вычисляем согласно формуле (4.19):



По формуле (4.20) рассчитываем ёмкость эмиттера:


Крутизну внутреннего источника вычисляем по формулам (4.21) и (4.22):



4.3.2 Расчет высокочастотной однонаправленной модели


Однонаправленная модель справедлива в области частот более , где = ( - граничная частота коэффициента передачи тока,  - статический коэффициент передачи тока в схеме с общим эмиттером) [4].

Однонаправленная модель транзистора представлена на рисунке 4.6.



Рисунок 4.6 – Однонаправленная модель транзистора



Элементы схемы замещения, приведенной на рисунке 4.6, могут быть рассчитаны по следующим эмпирическим формулам [4].

Входное сопротивление:

                                                                                        (4.24)

где - сопротивление базы в схеме Джиаколетто (см. рисунок.4.5).


Выходное сопротивление:

                                                                            (4.25)

где UКЭМАХ – предельное значение напряжения коллектор-эмиттер (*);

       IКМАХ – предельное значение постоянного тока коллектора (*).


Подставляя в выражение (4.25) числовые значения, получаем:


Выходная ёмкость:

                                                                                      (4.26)

где СК – ёмкость коллектора, рассчитанная в соответствии с формулой

 (4.17,б)

 


4.4 Расчет цепей термостабилизации


Существует несколько видов схем термостабилизации [5,6]. Использование этих схем зависит от мощности каскада и требований к термостабильности. В данной работе рассмотрены следующие три схемы термостабилизации: эмиттерная, пассивная коллекторная, активная коллекторная. Необходимо сравнить эффективность использования данных схем.


4.4.1 Эмиттерная термостабилизация


Рассмотрим эмиттерную термостабилизацию, схема которой приведена на рисунке 4.7. Метод расчёта и анализа эмиттерной термостабилизации подробно описан в [5,6].


Рисунок 4.7 – Схема эмиттерной термостабилизации


Расчет номиналов элементов осуществляется по известной методике, исходя из заданной рабочей точки.

Рабочая точка достаточно жестко стабилизирована, если

                                                                               (4.27)


Номинал резистора RЭ находится по закону Ома:

                                                                               (4.28)

Емкость СЭ позволяет всему сигналу от генератора выделяться на транзисторе. Номинал рассчитывается по формуле:

.                                                                                   (4.29)

Напряжение источника питания будет составлять сумму падений напряжений на транзисторе и резисторе в цепи эмиттера:


                                                                          (4.30)


Базовый ток в   раз меньше тока коллектора:

                                                                                        (4.31)

Выбор тока делителя осуществляется следующим образом:

                                                                             (4.32)

Расчет номиналов резисторов базового делителя производим по формулам:

                                                                     (4.33)

                                                                               (4.34)

Принимая  и , согласно выражениям (4.27) – (4.34) производим численный расчет:


Также проведем расчет мощности, рассеиваемой на резисторе RЭ.


4.4.2 Пассивная коллекторная термостабилизация


Этот вид термостабилизации [5,6]  применяется в маломощных каскадах и менее эффективен, чем две другие, потому что напряжение отрицательной обратной связи, регулирующее ток через транзистор подаётся на базу.

Схема каскада с использованием пассивной коллекторной термостабилизации представлена на рисунке 4.8:


Рисунок 4.8 – Схема пассивной коллекторной термостабилизации


Расчет начинают с того, что выбирается напряжение на резисторе Rk: 


                                                                            (4.35)


Номинал резистора RК находится по закону Ома:

                                                                                 (4.36)

Напряжение источника питания будет составлять сумму падений напряжений на транзисторе и резисторе Rk:


                                                                        (4.37)

Базовый ток в   раз меньше тока коллектора:

                                                                                        (4.38)

Расчет номинала резистора Rб производится по формуле:

                                                                               (4.39)

Принимая , согласно выражениям (4.35) – (4.39) производим численный расчет:


Рассеиваемая на резисторе Rk мощность при такой термостабилизации находится по формуле:

                                                                     (4.40)


4.4.3 Активная коллекторная термостабилизация


В активной коллекторной термостабилизации используется дополнительный транзистор, который управляет работой основного транзистора. Эта схема применяется в мощных каскадах, где требуется высокий КПД [5,6].


Схема каскада с использованием активной коллекторной термостабилизации представлена на рисунке 4.9.



Рисунок 4.9 – Схема активной коллекторной термостабилизации


В качестве управляемого активного сопротивления выбран маломощный транзистор КТ361А (на рисунке 4.9 – VT1). Основные технические параметры данного транзистора приведены ниже [4].


Электрические параметры:

-статический коэффициент передачи тока в схеме с ОЭ ;

-емкость коллекторного перехода при  В пФ.


Предельные эксплуатационные данные:

-постоянное напряжение коллектор-эмиттер В;

-постоянный ток коллектора мА;

-постоянная рассеиваемая мощность коллектора при Тк=298К Вт.


При условии, что на резисторе R4 за счет протекания тока покоя транзистора VT2 выделяется напряжение UR4 более одного вольта, нестабильность этого тока в диапазоне изменения температуры от минус 60 до плюс 60 градусов не превышает 2%.

В данном случае примем напряжение UR4 равным 1.5 В.

Энергетический расчет схемы производится по следующим формулам:

Напряжение источника питания будет составлять сумму падений напряжений на транзисторе VT2 и резисторе R4  (рисунок 4.9):

                                                                     (4.41)

Рабочая точка транзистора VT1 находится согласно следующим выражениям:

                                                                 (4.42)

                                                                            (4.43)

Базовый ток транзистора VT1 и ток делителя R1, R3 рассчитываются соответственно по формулам:

                                                                              (4.44)

                                                                                 (4.45)


Мощности, рассеиваемые на транзисторе VT1 и на резисторе R4, находятся следующим образом:

                                                              (4.46)

                                                                   (4.47)


Расчет номиналов схемы, представленной на рисунке 4.9, производится согласно следующим выражениям:


                                                                     (4.48)

                                                                     (4.49)

                                                                            (4.50)

                                                                               (4.51)


Подставляя в выражения (4.41) - (4.51) числовые значения, получаем:





Данная схема требует значительное количество дополнительных элементов, в том числе и активных. Если СБЛ утратит свои свойства, то каскад самовозбудится и будет не усиливать, а генерировать. Основываясь на проведённом выше анализе схем термостабилизации выберем эмитерную.


4.5 Расчет некорректированного каскада


4.5.1 Анализ каскада в области верхних частот


Принципиальная схема некорректированного усилительного каскада приведена на рисунке 4.10, а эквивалентная схема по переменному току - на рисунке 4.10,б.


Рисунок 4.10,а – Принципиальная схема некорректированного каскада



Рисунок 4.10,б – Эквивалентная схема по переменному току


В соответствии с [8] коэффициент усиления каскада в области верхних частот можно описать выражением:

                                                                            (4.52)

где К0 – коэффициент усиления в области средних частот (где еще не

              возникают искажения);

     - постоянная времени в области верхних частот.


Рассчитаем коэффициент усиления в области средних частот по формуле:

                                                                            (4.53)


                                                                                    (4.54)


Крутизна S0 находится по формуле:

                                                                          (4.55)

При подстановке числовых значений в формулы (4.53), (4.54) и (4.55) получаем:


Переведем полученный коэффициент усиления из разов в децибелы:

Коэффициент усиления некорректированного каскада получился больше заданного. Но подключение входной цепи (генератора) даст значительные искажения, что приведет к уменьшению коэффициента усиления. Таким образом, необходима коррекция.


Оценим искажения на частоте, соответствующей верхней границе полосы пропускания:

                                                            (4.56)

где постоянная времени в области верхних частот рассчитывается по формуле

                                                                   (4.57)

где                                                                        (4.58)


При подстановке числовых значений в формулы (4.56) - (4.58) получаем:




Переведем полученные искажения  в области верхних частот из разов в децибелы:

Получается, что искажения в области верхних частот превышают заданный уровень искажений для одного каскада.


4.5.2 Расчет искажений, вносимых входной  цепью


Схема входной цепи каскада по переменному току приведена на рисунке 4.12, где RГ - внутреннее сопротивление источника сигнала.



Рисунок 4.12 - Схема входной цепи некорректированного каскада



При условии аппроксимации входного сопротивления каскада параллельной RC-цепью, коэффициент передачи входной цепи в области верхних частот описывается выражением [5]:

                                                                          (4.59)

где ,                                                                     (4.60)

                                                                       (4.61)

 

,                                                             (4.62)


.                                                                   (4.63)


Подставляя в формулы (4.59) – (4.63) численные значения, получаем:




Оценим искажения, обусловленные наличием входной цепи, на частоте, соответствующей верхней границе полосы пропускания:

                                                  (4.64)


Переведем полученные искажения  из разов в децибелы:


Рассчитаем, на какой верхней граничной частоте будут возникать допустимые искажения (0.5дБ) по формуле


                                                                  (4.65)


Получается, что искажения, обусловленные наличием входной цепи, значительно превышают заданный уровень. Кроме того, некорректированный каскад не обеспечивает заданной полосы пропускания.

4.6 Расчет элементов эмиттерной  коррекции


Принципиальная схема каскада с эмиттерной коррекцией приведена на рисунке 4.13а, эквивалентная схема по переменному току - на рисунке 4.13б, где R1, C1 – элементы коррекции. При отсутствии реактивности нагрузки эмиттерная коррекция вводится для коррекции искажений АЧХ вносимых транзистором, увеличивая амплитуду сигнала на переходе база-эмиттер с ростом частоты усиливаемого сигнала.


Рисунок 4.13а - Принципиальная схема каскада с эмиттерной коррекцией


Рисунок 4.13а - эквивалентная схема по переменному току


В соответствии с [8], коэффициент передачи каскада в области верхних частот, при выборе элементов коррекции  и  соответствующими оптимальной по Брауде форме АЧХ, описывается выражением:

,                                                       (4.66)

где      ;

   - нормированная частота;

  ;

  ;

  ;                                                                                     (4.67)

  ;                                                              (4.68)

   - глубина ООС;                                                          (4.69)

  ;                                                                            (4.70)

  ;                                                                             (4.71)

  .                                                              (4.72)

При заданном значении , значение  определяется выражением:

.                                                                (4.73)

Подставляя известные  и  в (4.1) найдем:

,                               (4.74)

где      .

Входное сопротивление каскада с эмиттерной коррекцией может быть аппроксимировано параллельной RC-цепью [1]:

;                                               (4.75)

.                                                    (4.76)


Используя данные, полученные при расчет схемы Джиаколетто, и формулы (4.67-4.76), рассчитаем полосу пропускания (верхнюю граничную частоту) усилителя, CВХ и RВХ .

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.