Рефераты. Схемотехника аналоговых электронных устройств








         Усилители с распределенным усилением (УРУ) (рисунок 7.11) позволяют достичь большой мощности выходного сигнала на низкоомной нагрузке за счет сложения токов транзисторов в выходной линии. Однако УРУ отличает сложная схемная реализация и низкий КПД.


         Каскадно - распределенные усилители (рисунок 7.12), сочетая достоинства каскадных и УРУ, позволяют получить хорошие мощностные характеристики в широкой полосе рабочих частот при относительно простой схемной реализации. Выбором  и  добиваются одинакового усиления по току транзисторов  и . Поскольку выходные токи транзисторов складываются в нагрузке, то возможно использование данного каскада на частотах, близких к  используемых транзисторов.


 

         Балансные ШУ (рисунок 7.13) позволяют уменьшить паразитную обратную связь между транзисторами при их каскадировании, что позволяет увеличить устойчивый коэффициент усиления. Наличие направленных ответвителей (НО) существенно увеличивает габариты балансных усилителей.


         Для расчета СВЧ усилителей наиболее широко используется система S-параметров (параметров рассеяния). При этом транзистор представляют в виде четырехполюсника, нагруженного на стандартные опорные сопротивления, как правило, равные волновому сопротивлению применяемых передающих линий (рисунок 7.14).



         Выбор S-параметров обусловлен относительной простотой обеспечения режима согласования на СВЧ (по сравнению, скажем, с режимом короткого замыкания при измерении Y-параметров), и, следовательно, корректностью их экспериментального определения, а также  ясным физическим смыслом, а именно:

 - коэффициент отражения от входа при согласованном выходе;

 - коэффициент отражения от выхода при согласованном входе;

 - коэффициент усиления в прямом направлении при согласованном выходе;

 - коэффициент усиления в обратном направлении при согласованном  входе.

         Для анализа передаточных характеристик СВЧ усилительных устройств также используют обобщенный метод узловых потенциалов, эквивалентные Y-параметры определяются через измеренные параметры рассеяния:

,

,

,

,

где .

Параметры рассеяния  транзистора (или любого четырехполюсника) можно рассчитать по его эквивалентной схеме, используя все тот же обобщенный метод узловых потенциалов:

,

где  - нормировочный коэффициент, равный:

 - для ,

 - для ,

 для  и ;

 - символ Кронекера, =1, если i=j, и =0, если i¹j.

Ввиду сложности эквивалентных схем усилительных элементов и наличия распределенных структур, расчет передаточных характеристик усилителей СВЧ диапазона возможен только с помощью ЭВМ. Используя современные пакеты проектирования РЭУ, базы данных элементов и готовых схемных решений, разработчики имеют возможность, не проводя дорогостоящего натурного моделирования, получить ожидаемые реальные значения передаточных характеристик. С помощью ЭВМ возможно построение оптимальной топологии подложки усилителей, что позволяет полностью автоматизировать процесс проектирования усилителей СВЧ.

В настоящее время транзисторные СВЧ усилители выполняются, как правило, в гибридно-интегральном исполнении или в виде полупроводниковой интегральной микросхемы (монолитная технология) со стандартным напряжением питания. В качестве подложки при гибридном исполнении наиболее часто используются поликор, сапфир. Пассивные элементы выполняются по тонко- или толстопленочной технологии. Наилучшим материалом для выполнения контактных площадок, перемычек, выводов бескорпусных транзисторов является золото. Корпуса СВЧ усилителей выполняют из металла, имеющего одинаковый температурный коэффициент расширения с материалом подложки (например, поликор - титан). Для подключения СВЧ усилителей к тракту передачи используют СВЧ разъемы различной конструкции.

         Самой современной является технология выполнения СВЧ усилителей по монолитной технологии. Этому способствовали успехи в создании высококачественного эпитаксиального арсенида галлия с высокой однородностью параметров по площади больших размеров, промышленно освоенная технология получения полевых транзисторов с длиной затвора до 0,5мкм, изучение методов расчета и исследование технологии изготовления сосредоточенных пассивных элементов в диапазоне рабочих частот до 20 ГГц, промышленное освоение технологии селективного ионного легирования арсенида галлия, создание математических моделей активных и пассивных элементов  в сочетании с развитием методов машинного проектирования.

         При изготовлении ИС СВЧ усилителей в большинстве случаев используется полуизолирующий арсенид галлия. Его конкурентом является сапфир, используемый в технологии "кремний на сапфире". В ИС миллиметрового диапазона волн в качестве подложки применяется чистый кремний.

         При создании ИС СВЧ процессы схемотехнического проектирования, конструирования и технологии неразделимы. Технология изготовления ИС СВЧ основана на использовании уникальных свойств арсенида галлия в сочетании с методами ионной имплантации. Изолирующие свойства подложки из арсенида галлия, имеющего удельное сопротивление до Ом×см, дают возможность изготовить на одном кристалле арсенида галлия ИС, содержащую активные приборы, пассивные цепи СВЧ и схемы питания.

         Преимуществом ШУ СВЧ, выполненных в виде монолитных ИС, являются малые габаритные размеры и масса, широкая полоса рабочих частот из-за отсутствия стыковок и паразитных реактивностей, уменьшение доли ручного труда, воспроизводство рабочих характеристик и т.д.

         К недостаткам ИС СВЧ усилителей является сложность технологии изготовления, высокие затраты на разработку, низкий процент выхода годных схем, сложность с отводом тепла от активных элементов, худшие электрические параметры (без подстройки). Подстройка возможна, если в схеме и конструкции предусмотрена возможность изменения режима работы активных элементов и параметров корректирующих цепей, цепей ООС и т.д. Для ИС, выполненных по монолитной технологии, проводят разбраковку по допустимому интервалу допусков.


         7.3. Устройства формирования АЧХ

         7.3.1. Активные фильтры на ОУ

         Активные фильтры реализуются на основе усилителей (обычно ОУ) и пассивных RC- фильтров. Среди преимуществ активных фильтров по сравнению с пассивными следует выделить:

         · отсутствие катушек индуктивности;

         · лучшая избирательность;

         · компенсация затухания полезных сигналов или даже их усиление;

         · пригодность к реализации в виде ИМС.

         Активные фильтры имеют и недостатки:

         ¨ потребление энергии от источника питания;

         ¨ ограниченный динамический диапазон;

         ¨ дополнительные нелинейные искажения сигнала.

Отметим так же, что использование активных фильтров с ОУ на частотах свыше десятков мегагерц затруднено из-за малой частоты единичного усиления  большинства ОУ широкого применения. Особенно преимущество активных фильтров на ОУ проявляется на самых низких частотах, вплоть до долей герц.

         В общем случае можно считать, что ОУ в активном фильтре корректирует АЧХ пассивного фильтра за счет обеспечения разных условий для прохождения различных частот спектра сигнала, компенсирует потери на заданных частотах, что приводит к получению крутых спадов выходного напряжения на склонах АЧХ. Для этих целей используются разнообразные частотно-избирательные ОС в ОУ. В активных фильтрах обеспечивается получение АЧХ всех разновидностей фильтров: нижних частот (ФНЧ), верхних частот (ФВЧ) и полосовых (ПФ).

         Первым этапом синтеза всякого фильтра является задание передаточной функции (в операторной или комплексной форме), которая отвечает условиям практической реализуемости и одновременно обеспечивает получение необходимой АЧХ или ФЧХ (но не обеих) фильтра. Этот этап называют аппроксимацией характеристик фильтра.

         Операторная функция представляет собой отношение полиномов:

K(p)=A(p)/B(p),

и однозначно определяется нулями и полюсами. Простейший полином числителя - константа. Число полюсов функции (а в активных фильтрах на ОУ число полюсов обычно равно числу конденсаторов в цепях, формирующих АЧХ) определяет порядок фильтра. Порядок фильтра указывает на скорость спада его АЧХ, которая для первого порядка составляет 20дБ/дек, для второго - 40дБ/дек, для третьего - 60дБ/дек и д.д.

         Задачу аппроксимации решают для ФНЧ, затем с помощью метода инверсии частоты полученную зависимость используют для других типов фильтров. В большинстве случаев задают АЧХ, принимая нормированный коэффициент передачи:

,

где f(х) - функция фильтрации;  - нормированная частота;  - частота среза фильтра; e - допустимое отклонение в полосе пропускания.

         В зависимости от того, какая функция принимается в качестве f(х) различают фильтры (начиная со второго порядка) Баттерворта, Чебышева, Бесселя и др. На рисунке 7.15 приведены их сравнительные характеристики.

         Фильтр Баттерворта (функция Батерворта) описывает АЧХ с максимально плоской частью в полосе пропускания и относительно небольшой скоростью спада. АЧХ такого ФНЧ может быть представлена в следующем виде:

,

где n - порядок фильтра.

         Фильтр Чебышева (функция Чебышева) описывает АЧХ с определенной неравномерностью в полосе пропускания, но не большей скоростью спада.

         Фильтр Бесселя характеризуется линейной ФЧХ, в результате чего сигналы, частоты которых лежат в полосе пропускания, проходят через фильтр без искажений. В частности, фильтры Бесселя не дают выбросов при обработке колебаний прямоугольной формы.

         Помимо перечисленных аппроксимаций АЧХ активных фильтров известны и другие, например, обратного фильтра Чебышева, фильтра Золотарева и т.д. Заметим, что схемы активных фильтров не изменяются в зависимости от типа аппроксимации АЧХ, а изменяются соотношения между номиналами их элементов.

         Простейшие (первого порядка) ФВЧ, ФНЧ, ПФ и их ЛАЧХ приведены на рисунке 7.16.

В этих фильтрах конденсатор, определяющий частотную характеристику, включен в цепь ООС.

         Для ФВЧ (рисунок 7.16а) коэффициент передачи равен:

,

где .

         Частоту сопряжения асимптот  находят из условия , откуда

.

Для ФНЧ (рисунок 7.16б) имеем:

,

.

где .

         В ПФ (рисунок 7.16в) присутствуют элементы ФВЧ и ФНЧ.





         Можно увеличить крутизну спада ЛАЧХ, если увеличить порядок фильтров. Активные ФНЧ, ФВЧ и ПФ второго порядка приведены на рисунке 7.17.

Наклон асимптот у них может достигать 40дБ/дек, а переход от ФНЧ к ФВЧ, как видно из рисунков 7.17а,б, осуществляется заменой резисторов на конденсаторы, и наоборот.          В ПФ (рисунок 7.17в) имеются элементы ФВЧ и ФНЧ. Передаточные функции равны [13]:

         ¨ для ФНЧ:

;

         ¨ для ФВЧ:

;


         ¨ для ПФ:

.


         Для ПФ резонансная частота равна:

.

         Для ФНЧ и ФВЧ частоты среза соответственно равны:

;

.

         Довольно часто  ПФ второго порядка реализуют с помощью мостовых цепей. Наиболее распространены двойные Т-образные мосты, которые "не пропускают" сигнал на частоте резонанса (рисунок 7.18а) и мосты Вина, имеющие максимальный коэффициент передачи на резонансной частоте  (рисунок 7.18б).


         Мостовые схемы включены в цепи ПОС и ООС. В случае двойного Т-образного моста глубина ООС минимальна на частоте резонанса, и усиление на этой частоте максимально. При использовании моста Вина, усиление на частоте резонанса максимально, т.к. максимальна глубина ПОС. При этом для сохранения устойчивости глубина ООС, введенной с помощью резисторов  и , должна быть больше глубины ПОС. Если глубины ПОС и ООС близки, то такой фильтр может иметь эквивалентную добротность Q»2000.

         Резонансная частота двойного Т-образного моста при  и , и моста Вина при  и , равна , и ее выбирают исходя из условия  устойчивости , т.к. коэффициент передачи моста Вина на частоте  равен 1/3.

         Для получения режекторного фильтра двойной Т-образный мост можно включить так, как показано на рисунке 7.18в, или мост Вина включить в цепь ООС.

         Для построения активного перестраемого фильтра обычно используют мост Вина, у которого резисторы  и  выполняют в виде сдвоенного переменного резистора.

         Возможно построение активного универсального фильтра (ФНЧ, ФВЧ и ПФ), вариант схемы которого приведен на рисунке 7.19.



В его состав входят сумматор на ОУ  и два ФНЧ первого порядка на ОУ  и , которые включены последовательно. Если , то частота сопряжения . ЛАЧХ имеет наклон асимптот порядка 40дБ/дек. Универсальный активный фильтр имеет хорошую  стабильность параметров и высокую добротность (до 100). В серийных ИМС довольно часто используется подобный принцип построения фильтров.


         7.3.2. Гираторы


         Гиратором называется электронное устройство, преобразующее полное сопротивление реактивных элементов. Обычно это преобразователь емкости в индуктивность, т.е. эквивалент индуктивности. Иногда гираторы называют синтезаторами индуктивностей. Широкое распространение гираторов в ИМС объясняется большими трудностями изготовления катушек индуктивностей с помощью твердотельной технологии. Использование гираторов позволяет получить относительно большую индуктивность с хорошими массогабаритными показателями.

         На рисунке 7.20 приведена электрическая схема одного из вариантов гиратора, представляющего собой повторитель на ОУ, охваченный частотно-избирательной ПОС ( и ).


         Поскольку с увеличением частоты сигнала емкостное сопротивление конденсатора  уменьшается, то напряжение в точке а будет возрастать. Вместе с ним будет возрастать напряжение на выходе ОУ. Увеличенное напряжение с выхода по цепи ПОС поступает на неинвертирующий вход, что приводит к дальнейшему росту напряжения в точке а, причем тем интенсивнее, чем выше частота. Таким образом, напряжение в точке а ведет себя подобно напряжению на катушке индуктивности. Синтезированная индуктивность определяется по формуле [12]:

.

Добротность гиратора определяется как [12]:

.

         Одной из основных проблем при создании гираторов является трудность в получении эквивалента индуктивности, у которой оба вывода не соединены с общей шиной. Такой гиратор выполняется, как минимум, на четырех ОУ. Другой проблемой является относительно узкий диапазон рабочих частот гиратора (до нескольких килогерц на ОУ широкого применения).


         7.3.3. Регуляторы тембра и эквалайзеры


         Для коррекции АЧХ в усилителях низких (звуковых) частот (УНЧ) применяют регуляторы тембра. В настоящее время наиболее часто применяют активные регуляторы тембра, не вносящие потери в нейтральном положении регулятора (равномерная передача во всей полосе рабочих частот). В качестве активных элементов чаще всего используют ОУ. Принципиальная схема симметричного активного регулятора тембра и его АЧХ приведены на рисунке 7.21.


         Нетрудно увидеть, что ОУ здесь охвачен цепями ООС, представляющими собой частотнозависимые делители напряжения нижних () и верхних () частот. При диапазоне регулирования тембра не более 20дБ элементы схемы можно определить из соотношений [9]:

,

,

,

,

,

,

где  и  -  соответственно, нижняя и верхняя частоты регулирования.

         Регулирование АЧХ УНЧ в нескольких отдельных участках частотного диапазона осуществляется с помощью эквалайзеров, которые преимущественно представляют собой активные регулируемые ПФ второго порядка. Пример построения эквалайзера с параллельными цепями ООС, представляющими собой ПФ с регулируемым затуханием и настроенные на частоты через октаву, начиная с , приведен на рисунке 7.22.


         Более подробная информация по регуляторам тембра и эквалайзерам содержится в [9].


7.4. Аналоговые перемножители сигналов


         Перемножение аналоговых сигналов, как и усиление, является одной из основных операций при обработке электрических сигналов. Для  осуществления операции перемножения были разработаны специализированные ИМС - перемножители аналоговых сигналов (ПАС). ПАС должны обеспечивать точное перемножение  в широком динамическом диапазоне входных сигналов и в возможно более широком частотном диапазоне. Если ПАС позволяют перемножать сигналы любых полярностей, то их называют четырехквадрантными, если один из сигналов может быть только одной полярности, двухквадрантными. Перемножители, умножающие однополярные сигналы, называются одноквадрантными. Известны разнообразные одно- и двухквадрантные ПАС на основе элементов с управляемым сопротивлением, переменной крутизной, использованием логарифматоров и антилогарифматоров. Например, регулятор с изменением режима работы элементов, изображенный на рисунке 7.7в, можно использовать в качестве перемножителя, если на дифференциальный вход подать напряжение , а вместо  подать . Под воздействием  меняется крутизна передаточной характеристики транзисторов, на базы которых подается второе перемножаемое напряжение . Можно показать, что выходное напряжение , снимаемое между коллекторами транзисторов ДК, при  определяется по формуле [13]

,

где  - коэффициент усиления по току БТ, включенного по схеме с ОБ;  - температурный потенциал, .

         Если , то выражение для  можно упростить:

.

         Недостатком рассмотренного простейшего перемножителя на одиночном ДК является весьма малый динамический диапазон входных сигналов, в котором обеспечивается приемлемая точность перемножения. Например, уже при  погрешность перемножения достигает 10%.

         Более широкий динамический диапазон перемножаемых напряжений при меньшей погрешности обеспечивают логарифмические перемножители построенные по принципу "логарифмирование - антилогарифмирование". Схема подобного ПАС приведена на рисунке 7.23.



        

         Здесь ОУ  и  производят логарифмирование входных напряжений, а  используется в качестве сумматора, на выходе которого напряжение равно:

.

С помощью ОУ производят антилогарифмирование

Следует заметить, что в данных выражениях используются напряжения, нормированные относительно одного вольта. Коэффициенты пропорциональности , ,  определяются резистивными элементами, включенными в цепи ООС используемых ОУ. Большим недостатком подобных ПАС является сильная зависимость диапазона рабочих частот от амплитуд входных сигналов. Так, если при входном напряжении 10В верхняя частота перемножаемых напряжений может составлять 100кГц, то при входном напряжении 1В полоса рабочих частот сужается до 10кГц [13].

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.