Рефераты. Схемотехника аналоговых электронных устройств






,

,

,

         По приведенным выражениям строится АЧХ и ФЧХ каскада в области ВЧ.

         Связь коэффициента частотных искажений  и  выражается как

.

         В n-каскадном усилителе с одинаковыми каскадами наблюдается эффект сужения полосы рабочих частот, который можно скомпенсировать увеличением верхней граничной частоты каскадов  до

.


         Эквивалентная схема каскада в области НЧ приведена на рисунке 2.15.


         Поведение АЧХ в этой области определяется влиянием разделительных () и блокировочных () емкостей.

         Влияние этих емкостей на коэффициент частотных искажений в области НЧ  каскада можно определить отдельно, используя принцип суперпозиции. Общий коэффициент частотных искажений в области НЧ определится как

,

где N - число цепей формирующих АЧХ в области НЧ.

         Рассмотрим влияние  на АЧХ каскада. Проведя анализ согласно методике раздела 2.4, получим выражение для коэффициента передачи в области НЧ:

,

где - постоянная времени разделительной цепи в области НЧ.

         Постоянная времени разделительных цепей в общем случае может быть определена по формуле

,

где  - эквивалентное сопротивление, стоящее слева от  (обычно это выходное сопротивление предыдущего каскада или внутреннее сопротивление источника сигнала),  - эквивалентное сопротивление, стоящее справа от  (обычно это входное сопротивление следующего каскада или сопротивление нагрузки).

         Для рассматриваемой цепи постоянная времени равна:

.

         Выражения для относительного коэффициента передачи и коэффициента частотных искажений в области НЧ таковы:

,

,

,

,

и в комментариях не нуждаются. По этим выражениям оценивается влияние конкретной цепи на АЧХ и ФЧХ каскада в области НЧ.

         Связь между коэффициентом частотных искажений и нижней граничной частотой выражается формулой

.

         Аналогичным образом учитывается влияние других разделительных и блокировочных цепей, только для блокировочной эмиттерной цепи постоянная времени приблизительно оценивается величиной   т.к. сопротивление БТ со стороны эмиттера приблизительно равно  (см. подраздел 2.4.1), а влиянием  в большинстве случаев можно пренебречь, т.к. обычно <<.

         Результирующую АЧХ и ФЧХ каскада в области НЧ можно построить, используя уже упоминавшийся принцип суперпозиции.

         В n-каскадном усилителе с одинаковыми каскадами наблюдается эффект сужения полосы рабочих частот, который в области НЧ можно скомпенсировать уменьшением нижней граничной частоты каскадов до .




         2.6. Термостабилизация режима каскада на биполярном

                транзисторе

         Параметры БТ в значительной мере подвержены влиянию внешних факторов (температуры, радиации и др.). В то же время, одним из основных параметров усилительного каскада является  его стабильность. Прежде всего, важно, чтобы в усилителе обеспечивался стабильный режим покоя.

         Проанализируем вопрос влияния температуры на стабильность режима  покоя БТ,  конкретно - .

         Существуют три основных фактора, влияющих на изменении  под действием температуры: при увеличении температуры, во-первых, увеличивается напряжение , во-вторых, обратный ток коллекторного перехода , и, в третьих, возрастает коэффициент .


         Для анализа реальный транзистор можно представить в виде идеального, у которого параметры не зависят от температуры, а  температурную зависимость смоделировать включением внешних источников напряжения и тока (рисунок 2.16).

         Рассмотрим  влияние этих факторов на приращение тока коллектора . Начнем с влияния изменения , вызванного тепловым смещением проходных характеристик , обозначив при этом приращение тока коллектора как :

 ,

где               -   приращение напряжения , равное:

|e|,

где          e   -    температурный коэффициент напряжения (ТКН),

 e-3мВ/град.,  Т - разность между температурой коллекторного перехода

перехода  и справочным значением этой температуры (обычно 25C):

,

,

где и   соответственно, мощность, рассеиваемая на коллекторном переходе в статическом режиме, и тепловое сопротивление “переход-среда”:

,

.

         Ориентировочное значение теплового сопротивления зависит от конструкции корпуса транзистора и обычно для транзисторов малой и средней мощности лежит в следующих пределах:

.

Меньшее тепловое сопротивление имеют керамические и металлические корпуса, большее - пластмассовые.


Отметим, что  берется положительным, хотя  имеет знак минус, это поясняется на рисунке 2.17.

         Определяем приращение тока коллектора , вызванного изменением обратного (неуправляемого) тока коллектора:

,

где приращение обратного тока   равно:

,

где a - коэффициент показателя, для кремниевых транзисторов a=0,13.

         Следует заметить, что значение, приводимое в справочной литературе, особенно для транзисторов средней и большой мощности, представляет собой сумму тепловой составляющей и поверхностного тока утечки, последний может быть на два порядка больше тепловой составляющей, и он практически не зависит от температуры. Следовательно, при определении   следует пользоваться приводимыми в справочниках температурными зависимостями  , либо уменьшать справочное значение  примерно на два порядка  (обычно  для кремниевых транзисторов составляет порядка ,  и порядка для германиевых, n=(1...9).

         Приращение коллекторного тока, вызванного изменением , определяется соотношением:

,

где ,  отн. ед./град.

         Полагая, что все факторы действуют независимо друг от друга, запишем:

.

         Для повышения термостабильности каскада применяют специальные схемы питания и термостабилизации. Эффективность таких схем коэффициентом термостабильности, который в общем виде представляется как:

.

         Учитывая различный вклад составляющих , разное влияние на них элементов схем термостабилизации, вводят для каждой составляющей свой коэффициент термостабильности, получая выражения для термостабилизированного каскада:

.

         Обычно , что обусловлено одинаковым влиянием на  и  элементов схем термостабилизации:

.

         Полученная формула может быть использована для определения  усилительного каскада при любой схеме включения в нем БТ.

         Рассмотрим основные схемы питания и термостабилизации БТ.

         Термостабилизация фиксацией тока базы. Схема каскада представлена на рисунке 2.18.


           определяется соотношением:

,

т.к. .

         Очевидно, что "фиксируется" выбором , при этом ослабляется влияние первого фактора нестабильности тока коллектора (за счет смещения проходных характеристик). Коэффициенты термостабилизации для этой схемы таковы:

,

.

         Отсюда видно, что данная схема имеет малую эффективность термостабилизации ().

         Коллекторная термостабилизация. Схема каскада представлена на рисунке 2.19а.

          определяется соотношением:

,

т.к. .

         Термостабилизация в этой схеме осуществляется за счет отрицательной обратной связи (ООС), введенной в каскад путем включения  между базой и коллектором БТ. Механизм действия ООС можно пояснить следующей диаграммой:

,

петля ООС 

где символами  и показано, соответственно, увеличение и уменьшение соответствующего параметра. Коэффициенты термостабилизации для этой схемы:

,

.

         Из этих формул видно, что данная схема имеет лучшую термостабильность ( и  меньше единицы), чем схема с фиксированным током базы.

         В схеме коллекторной термостабилизации ООС  влияет и на другие характеристики каскада, что должно быть учтено. Механизм влияния данной ООС на характеристики каскада будет рассмотрен далее. Схемные решения, позволяющие устранить ООС на частотах сигнала, приведены на рисунках 2.19б,в.


         В большинстве случаев, наилучшими свойствами среди простейших (базовых) схем термостабилизации обладает эмиттерная схема термостабилизации показанная на рисунке 2.20.


         Эффект термостабилизации в этой схеме достигается:

         ¨ фиксацией потенциала  выбором тока базового делителя .

         ¨ введением по постоянному току ООС  путем включения резистора . На частотах сигнала эта ООС устраняется шунтированием резистора  емкостью .

Напряжение   определяется как:

.

Механизм действия ООС можно изобразить следующей диаграммой:

петля ООС


где символами  и  показано, соответственно, увеличение и уменьшение соответствующего параметра. Эскизный расчет эмиттерной схемы термостабилизации маломощного каскада можно проводить в следующей последовательности:

¨ Зададимся током делителя, образованного резисторами R и R :

 ;

¨ выбираем ,и определяем номинал :

 ;

¨ определяем потенциал :

;

         ¨ рассчитываем номиналы резисторов базового делителя:

,

 ,

где ,  определяется при расчете сигнальных параметров каскада.

         Коэффициенты термостабилизации для этой схемы:

,

.

Здесь  - параллельное соединение резисторов  и .

         Для каскадов повышенной мощности следует учитывать требования экономичности при выборе  и .

         Анализ полученных выражений показывает, что для улучшения термостабильности каскада следует увеличивать номинал  и уменьшать  .


         Для целей термостабилизации каскада иногда используют термокомпенсацию. Принципиальная схема каскада с термокомпенсацией приведена на рисунке 2.21.



         Здесь в цепь базы транзистора включен прямосмещенный диод D, температурный коэффициент стабилизации напряжения (ТКН) которого равен ТКН эмиттерного перехода БТ. При изменении температуры окружающей среды напряжение  и напряжение на диоде  будет меняться одинаково, в результате чего ток покоя базы  останется постоянным. Применение этого метода особенно эффективно в каскадах на кремниевых транзисторах, где основную нестабильность тока коллектора порождает   (из-за относительной малости ). Наилучшая реализация этого метода термокомпенсации достигается в ИМС, где оба перехода естественным образом локализуются в пределах одного кристалла и имеют совершенно одинаковые параметры. Возможно применение других термокомпенсирующих элементов и цепей, например, использующих сочетания БТ и ПТ. Большой класс цепей, питающих БТ, составляют схемы с двумя источниками питания, пример одной из них приведен на рисунке 2.22.

         По сути, это схема эмиттерной термостабилизации, у которой "жестко" зафиксирован потенциал , , а .

         Следует отметить возможность применения данных схем термостабилизации при любой схеме использования БТ  в любой комбинации.


2.7. Усилительный каскад на биполярном транзисторе с ОБ



         Вариант схемы каскада с ОБ с эмиттерной схемой термостабилизации приведен на рисунке 2.23, схема каскада для частот сигнала - на рисунке 2.24.



Каскад с ОБ называют еще "повторителем тока", т.к. коэффициент передачи по току этого каскада меньше единицы:

.

         При подаче на эмиттер положительной полуволны синусоидального входного сигнала будет уменьшаться ток эмиттера, а, следовательно, и ток коллектора. В результате падение напряжение на  уменьшится, а напряжение на коллекторе увеличится, т.е. произойдет формирование положительной полуволны выходного синусоидального напряжения. Таким образом, каскад с ОБ не инвертирует входной сигнал.

         Анализ работы усилительного каскада с ОБ по входным и выходным динамическим характеристикам можно провести аналогично разделу 2.5.

         Для расчета параметров каскада с ОБ по переменному току используем методику раздела 2.3, а БТ представлять моделью предложенной в разделе 2.4.1.

         Представим каскад с ОБ схемами для областей СЧ, ВЧ и НЧ (рисунок 2.25а,б,в):




         Проведя анализ, получим для области СЧ:

,

где ;

,

где , обычно .

.

Эти соотношения получены в предположении, что низкочастотное значение внутренней проводимости транзистора  много меньше  и . Это условие (если не будет оговорено особо) будет действовать и при дальнейшем анализе усилительных каскадов на БТ. Такое допущение справедливо потому, что БТ является токовым прибором и особенно эффективен при работе на низкоомную нагрузку.

         В области ВЧ получим:

,

где - постоянная времени каскада в области ВЧ, определяемая аналогично ОЭ.

,

где - выходная емкость каскада, .

,

т.е. модуль входной проводимости уменьшается с ростом частоты, что позволяет сделать вывод об индуктивном характере входной проводимости каскада с ОБ на ВЧ. Количественно индуктивную составляющую входного импеданса можно оценить следующим образом:

где m=(1,2...1,6).

         Выражения для относительного коэффициента передачи  и коэффициента частотных искажений  и соотношения для построения АЧХ и ФЧХ каскада с ОБ аналогичны приведенным в разделе 2.5 для каскада с ОЭ.

         В области НЧ получим:

,

где - постоянная времени разделительной цепи в области НЧ.

Далее все так же, как для каскада с ОЭ, за исключением расчета базовой блокировочной цепи, постоянная времени которой приближенно оценивается следующей формулой:

,

сопротивление БТ со стороны базы приблизительно равно , а влиянием можно пренебречь, обычно  >>  .



2.8. Усилительный каскад на биполярном транзисторе с ОК

Схема каскада с ОК с эмиттерной схемой термостабилизацией приведена на рисунке 2.26.


 Схема для частот сигнала изображена на рисунке 2.27.


Каскад с ОК называют еще "повторителем напряжения" или "эмиттерным повторителем", т.к. коэффициент передачи по напряжению этого каскада меньше единицы, что вытекает из его дальнейшего анализа.

При подаче на базу положительной полуволны входного синусоидального сигнала будет увеличиваться ток коллектора и, следовательно, ток эмиттера. В результате падение напряжения на  увеличится, т.е. произойдет формирование положительной полуволны выходного напряжения. Таким образом, каскад с ОК не инвертирует входной сигнал.

Напряжение сигнала, приложенное к эмиттерному переходу, является разностью между  и . Чем больше и  (при заданном  ), тем меньше окажется напряжение, приложенное к эмиттерному переходу, что будет приводить к уменьшению тока эмиттера и, соответственно, к уменьшению  , т.е. в каскаде с ОК проявляется действие ООС, причем 100%-ной.

Анализ работы усилительного каскада с ОК по входным и выходным динамическим характеристикам проводится как для ОЭ (см. раздел 2.5).

         Для расчета параметров каскада с ОК по переменному току используем методику раздела 2.3, а БТ представлять моделью предложенной в разделе 2.4.1.

         Представим каскад с ОК схемами для областей СЧ, ВЧ и НЧ (рисунок 2.28а,б,в):



         Проведя анализ, получим для области СЧ:

,

где , - глубина ООС;

,

где - входное сопротивление собственно транзистора,

;

,

где - выходное сопротивление собственно транзистора,

,

т.к.  и при работе каскада от низкоомного источника сигнала (при этом  ) второе слагаемое оказывается существенно меньше первого. В целом

,

потому, что, как правило, .

         В области ВЧ получим:

,

где - постоянная времени каскада в области ВЧ, ; t - постоянная времени БТ.

,

где , т.е. каскад с ОК имеет входную динамическую емкость меньшую, чем каскад с ОЭ;

,

т.е. модуль выходной проводимости уменьшается с ростом частоты, что позволяет сделать вывод об индуктивном характере выходной проводимости каскада с ОК на ВЧ. Количественно индуктивную составляющую выходного импеданса можно оценить следующим образом:

где m=(1,2...1,6).

                   Выражения для относительного коэффициента передачи  и коэффициента частотных искажений  и соотношения для построения АЧХ и ФЧХ каскада с ОК аналогичны приведенным в разделе 2.5 для каскада с ОЭ.

         В области НЧ получим:

,

где - постоянная времени разделительной цепи в области НЧ. далее все так же, как для каскада с ОЭ.

         Характеристики БТ при различных схемах включения приведены в таблице 2.1.

 

Таблица 2.1

Характеристики БТ при различных схемах включения

 

Параметр

Схема

ОЭ

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.